Handling class imbalance problem in software maintainability prediction: an empirical investigation
Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of softwar...
Ausführliche Beschreibung
Autor*in: |
Malhotra, Ruchika [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Higher Education Press 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of computer science in China - Beijing : Higher Education Press, 2007, 16(2021), 4 vom: 03. Dez. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2021 ; number:4 ; day:03 ; month:12 |
Links: |
---|
DOI / URN: |
10.1007/s11704-021-0127-0 |
---|
Katalog-ID: |
SPR053123182 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053123182 | ||
003 | DE-627 | ||
005 | 20230920064708.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230920s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11704-021-0127-0 |2 doi | |
035 | |a (DE-627)SPR053123182 | ||
035 | |a (SPR)s11704-021-0127-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Malhotra, Ruchika |e verfasserin |4 aut | |
245 | 1 | 0 | |a Handling class imbalance problem in software maintainability prediction: an empirical investigation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Higher Education Press 2022 | ||
520 | |a Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. | ||
650 | 4 | |a software maintenance |7 (dpeaa)DE-He213 | |
650 | 4 | |a software maintainability |7 (dpeaa)DE-He213 | |
650 | 4 | |a imbalanced learning |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lata, Kusum |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of computer science in China |d Beijing : Higher Education Press, 2007 |g 16(2021), 4 vom: 03. Dez. |w (DE-627)545787726 |w (DE-600)2388878-7 |x 1673-7466 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2021 |g number:4 |g day:03 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11704-021-0127-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
951 | |a AR | ||
952 | |d 16 |j 2021 |e 4 |b 03 |c 12 |
author_variant |
r m rm k l kl |
---|---|
matchkey_str |
article:16737466:2021----::adiglsiblnerbeisfwrmitiaiiyrdcinn |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11704-021-0127-0 doi (DE-627)SPR053123182 (SPR)s11704-021-0127-0-e DE-627 ger DE-627 rakwb eng Malhotra, Ruchika verfasserin aut Handling class imbalance problem in software maintainability prediction: an empirical investigation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 Lata, Kusum aut Enthalten in Frontiers of computer science in China Beijing : Higher Education Press, 2007 16(2021), 4 vom: 03. Dez. (DE-627)545787726 (DE-600)2388878-7 1673-7466 nnns volume:16 year:2021 number:4 day:03 month:12 https://dx.doi.org/10.1007/s11704-021-0127-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 16 2021 4 03 12 |
spelling |
10.1007/s11704-021-0127-0 doi (DE-627)SPR053123182 (SPR)s11704-021-0127-0-e DE-627 ger DE-627 rakwb eng Malhotra, Ruchika verfasserin aut Handling class imbalance problem in software maintainability prediction: an empirical investigation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 Lata, Kusum aut Enthalten in Frontiers of computer science in China Beijing : Higher Education Press, 2007 16(2021), 4 vom: 03. Dez. (DE-627)545787726 (DE-600)2388878-7 1673-7466 nnns volume:16 year:2021 number:4 day:03 month:12 https://dx.doi.org/10.1007/s11704-021-0127-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 16 2021 4 03 12 |
allfields_unstemmed |
10.1007/s11704-021-0127-0 doi (DE-627)SPR053123182 (SPR)s11704-021-0127-0-e DE-627 ger DE-627 rakwb eng Malhotra, Ruchika verfasserin aut Handling class imbalance problem in software maintainability prediction: an empirical investigation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 Lata, Kusum aut Enthalten in Frontiers of computer science in China Beijing : Higher Education Press, 2007 16(2021), 4 vom: 03. Dez. (DE-627)545787726 (DE-600)2388878-7 1673-7466 nnns volume:16 year:2021 number:4 day:03 month:12 https://dx.doi.org/10.1007/s11704-021-0127-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 16 2021 4 03 12 |
allfieldsGer |
10.1007/s11704-021-0127-0 doi (DE-627)SPR053123182 (SPR)s11704-021-0127-0-e DE-627 ger DE-627 rakwb eng Malhotra, Ruchika verfasserin aut Handling class imbalance problem in software maintainability prediction: an empirical investigation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 Lata, Kusum aut Enthalten in Frontiers of computer science in China Beijing : Higher Education Press, 2007 16(2021), 4 vom: 03. Dez. (DE-627)545787726 (DE-600)2388878-7 1673-7466 nnns volume:16 year:2021 number:4 day:03 month:12 https://dx.doi.org/10.1007/s11704-021-0127-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 16 2021 4 03 12 |
allfieldsSound |
10.1007/s11704-021-0127-0 doi (DE-627)SPR053123182 (SPR)s11704-021-0127-0-e DE-627 ger DE-627 rakwb eng Malhotra, Ruchika verfasserin aut Handling class imbalance problem in software maintainability prediction: an empirical investigation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press 2022 Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 Lata, Kusum aut Enthalten in Frontiers of computer science in China Beijing : Higher Education Press, 2007 16(2021), 4 vom: 03. Dez. (DE-627)545787726 (DE-600)2388878-7 1673-7466 nnns volume:16 year:2021 number:4 day:03 month:12 https://dx.doi.org/10.1007/s11704-021-0127-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 AR 16 2021 4 03 12 |
language |
English |
source |
Enthalten in Frontiers of computer science in China 16(2021), 4 vom: 03. Dez. volume:16 year:2021 number:4 day:03 month:12 |
sourceStr |
Enthalten in Frontiers of computer science in China 16(2021), 4 vom: 03. Dez. volume:16 year:2021 number:4 day:03 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
software maintenance software maintainability imbalanced learning |
isfreeaccess_bool |
false |
container_title |
Frontiers of computer science in China |
authorswithroles_txt_mv |
Malhotra, Ruchika @@aut@@ Lata, Kusum @@aut@@ |
publishDateDaySort_date |
2021-12-03T00:00:00Z |
hierarchy_top_id |
545787726 |
id |
SPR053123182 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053123182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230920064708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230920s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11704-021-0127-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053123182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11704-021-0127-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malhotra, Ruchika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handling class imbalance problem in software maintainability prediction: an empirical investigation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software maintenance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software maintainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imbalanced learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lata, Kusum</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of computer science in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">16(2021), 4 vom: 03. Dez.</subfield><subfield code="w">(DE-627)545787726</subfield><subfield code="w">(DE-600)2388878-7</subfield><subfield code="x">1673-7466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11704-021-0127-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Malhotra, Ruchika |
spellingShingle |
Malhotra, Ruchika misc software maintenance misc software maintainability misc imbalanced learning Handling class imbalance problem in software maintainability prediction: an empirical investigation |
authorStr |
Malhotra, Ruchika |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)545787726 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-7466 |
topic_title |
Handling class imbalance problem in software maintainability prediction: an empirical investigation software maintenance (dpeaa)DE-He213 software maintainability (dpeaa)DE-He213 imbalanced learning (dpeaa)DE-He213 |
topic |
misc software maintenance misc software maintainability misc imbalanced learning |
topic_unstemmed |
misc software maintenance misc software maintainability misc imbalanced learning |
topic_browse |
misc software maintenance misc software maintainability misc imbalanced learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of computer science in China |
hierarchy_parent_id |
545787726 |
hierarchy_top_title |
Frontiers of computer science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)545787726 (DE-600)2388878-7 |
title |
Handling class imbalance problem in software maintainability prediction: an empirical investigation |
ctrlnum |
(DE-627)SPR053123182 (SPR)s11704-021-0127-0-e |
title_full |
Handling class imbalance problem in software maintainability prediction: an empirical investigation |
author_sort |
Malhotra, Ruchika |
journal |
Frontiers of computer science in China |
journalStr |
Frontiers of computer science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Malhotra, Ruchika Lata, Kusum |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Malhotra, Ruchika |
doi_str_mv |
10.1007/s11704-021-0127-0 |
title_sort |
handling class imbalance problem in software maintainability prediction: an empirical investigation |
title_auth |
Handling class imbalance problem in software maintainability prediction: an empirical investigation |
abstract |
Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. © Higher Education Press 2022 |
abstractGer |
Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. © Higher Education Press 2022 |
abstract_unstemmed |
Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP. © Higher Education Press 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 |
container_issue |
4 |
title_short |
Handling class imbalance problem in software maintainability prediction: an empirical investigation |
url |
https://dx.doi.org/10.1007/s11704-021-0127-0 |
remote_bool |
true |
author2 |
Lata, Kusum |
author2Str |
Lata, Kusum |
ppnlink |
545787726 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11704-021-0127-0 |
up_date |
2024-07-03T17:13:33.047Z |
_version_ |
1803578835517571073 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053123182</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230920064708.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230920s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11704-021-0127-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053123182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11704-021-0127-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malhotra, Ruchika</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handling class imbalance problem in software maintainability prediction: an empirical investigation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As the complexity of software systems is increasing; software maintenance is becoming a challenge for software practitioners. The prediction of classes that require high maintainability effort is of utmost necessity to develop cost-effective and high-quality software. In research of software engineering predictive modeling, various software maintainability prediction (SMP) models are evolved to forecast maintainability. To develop a maintainability prediction model, software practitioners may come across situations in which classes or modules requiring high maintainability effort are far less than those requiring low maintainability effort. This condition gives rise to a class imbalance problem (CIP). In this situation, the minority classes’ prediction, i.e., the classes demanding high maintainability effort, is a challenge. Therefore, in this direction, this study investigates three techniques for handling the CIP on ten open-source software to predict software maintainability. This empirical investigation supports the use of resampling with replacement technique (RR) for treating CIP and develop useful models for SMP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software maintenance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software maintainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imbalanced learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lata, Kusum</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of computer science in China</subfield><subfield code="d">Beijing : Higher Education Press, 2007</subfield><subfield code="g">16(2021), 4 vom: 03. Dez.</subfield><subfield code="w">(DE-627)545787726</subfield><subfield code="w">(DE-600)2388878-7</subfield><subfield code="x">1673-7466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11704-021-0127-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.3993473 |