A New Separation Index and Classification Techniques Based on Shannon Entropy

Abstract The purpose is to use Shannon entropy measures to develop classification techniques and an index which estimates the separation of the groups in a finite mixture model. These measures can be applied to machine learning techniques such as discriminant analysis, cluster analysis, exploratory...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Navarro, Jorge [verfasserIn]

Buono, Francesco

Arevalillo, Jorge M.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Shannon entropy

Discriminant analysis

Cluster analysis

Kernel density estimation

Omic data

Anmerkung:

© The Author(s) 2023

Übergeordnetes Werk:

Enthalten in: Methodology and computing in applied probability - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1999, 25(2023), 4 vom: 22. Sept.

Übergeordnetes Werk:

volume:25 ; year:2023 ; number:4 ; day:22 ; month:09

Links:

Volltext

DOI / URN:

10.1007/s11009-023-10055-w

Katalog-ID:

SPR053163664

Nicht das Richtige dabei?

Schreiben Sie uns!