Finite dimensional realization of the FTR method with Raus and Gfrerer type discrepancy principle

Abstract It is known that the standard Tikhonov regularization methods oversmoothen the solution %$\hat{x}%$ of the ill-posed equation %$T(x)=y,%$ so the computed approximate solution lacks many inherent details that are expected in the desired solution. To rectify this problem, Fractional Tikhonov...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

George, Santhosh [verfasserIn]

Jidesh, P.

Krishnendu, R.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Tikhonov regularization method

Ill-posed problems

Discrepancy principle

Regularization parameter

Convergence rate

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Rendiconti del Circolo Matematico di Palermo - Milano : Springer Italia, 1884, 72(2023), 7 vom: 12. Jan., Seite 3765-3787

Übergeordnetes Werk:

volume:72 ; year:2023 ; number:7 ; day:12 ; month:01 ; pages:3765-3787

Links:

Volltext

DOI / URN:

10.1007/s12215-022-00858-0

Katalog-ID:

SPR053167082

Nicht das Richtige dabei?

Schreiben Sie uns!