Hierarchical Curriculum Learning for No-Reference Image Quality Assessment

Abstract Despite remarkable success has been achieved by convolutional neural networks (CNNs) in no-reference image quality assessment (NR-IQA), there still exist many challenges in improving the performance of IQA for authentically distorted images. An important factor is that the insufficient anno...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Juan [verfasserIn]

Chen, Zewen

Yuan, Chunfeng

Li, Bing

Ma, Wentao

Hu, Weiming

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

No-reference image quality assessment

Hierarchical curriculum learning

Prior knowledge

Cross-dataset quality assessment correlation

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: International journal of computer vision - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987, 131(2023), 11 vom: 25. Juli, Seite 3074-3093

Übergeordnetes Werk:

volume:131 ; year:2023 ; number:11 ; day:25 ; month:07 ; pages:3074-3093

Links:

Volltext

DOI / URN:

10.1007/s11263-023-01851-5

Katalog-ID:

SPR05319098X

Nicht das Richtige dabei?

Schreiben Sie uns!