Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters

Abstract Electricity load forecasting is an essential operation of the power system. Deep learning is used to improve accurate electricity load forecasting. In this study, combining Long short-term memory and reinforcement learning are proposed to encourage the advantage of a single approach for for...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Nguyen, Ngoc Anh [verfasserIn]

Dang, Tien Dat

Verdú, Elena

Kumar Solanki, Vijender

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Short-term forecasting

Electricity load

Long short term-memory

Reinforcement learning

Hyper parameters

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Evolutionary intelligence - Berlin : Springer, 2008, 16(2023), 5 vom: 23. Aug., Seite 1729-1746

Übergeordnetes Werk:

volume:16 ; year:2023 ; number:5 ; day:23 ; month:08 ; pages:1729-1746

Links:

Volltext

DOI / URN:

10.1007/s12065-023-00869-5

Katalog-ID:

SPR053192419

Nicht das Richtige dabei?

Schreiben Sie uns!