Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India
Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques...
Ausführliche Beschreibung
Autor*in: |
Jodhani, Keval H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Revised Universal Soil Loss Equation |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Water conservation science and engineering - [Singapore] : Springer Singapore, 2016, 8(2023), 1 vom: 26. Sept. |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2023 ; number:1 ; day:26 ; month:09 |
Links: |
---|
DOI / URN: |
10.1007/s41101-023-00223-x |
---|
Katalog-ID: |
SPR05321353X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR05321353X | ||
003 | DE-627 | ||
005 | 20231231064604.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231002s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s41101-023-00223-x |2 doi | |
035 | |a (DE-627)SPR05321353X | ||
035 | |a (SPR)s41101-023-00223-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jodhani, Keval H. |e verfasserin |0 (orcid)0000-0002-3800-2402 |4 aut | |
245 | 1 | 0 | |a Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. | ||
650 | 4 | |a Soil erosion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Revised Universal Soil Loss Equation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Google Earth Engine |7 (dpeaa)DE-He213 | |
650 | 4 | |a Remote sensing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Geographical information system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rel River |7 (dpeaa)DE-He213 | |
700 | 1 | |a Patel, Dhruvesh |0 (orcid)0000-0002-2074-7158 |4 aut | |
700 | 1 | |a Madhavan, N. |0 (orcid)0000-0002-8001-5370 |4 aut | |
700 | 1 | |a Singh, Sudhir Kumar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water conservation science and engineering |d [Singapore] : Springer Singapore, 2016 |g 8(2023), 1 vom: 26. Sept. |w (DE-627)858508001 |w (DE-600)2854650-7 |x 2364-5687 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2023 |g number:1 |g day:26 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s41101-023-00223-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2023 |e 1 |b 26 |c 09 |
author_variant |
k h j kh khj d p dp n m nm s k s sk sks |
---|---|
matchkey_str |
article:23645687:2023----::olrsoassmnbrseogeategnadesailehiusvre |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s41101-023-00223-x doi (DE-627)SPR05321353X (SPR)s41101-023-00223-x-e DE-627 ger DE-627 rakwb eng Jodhani, Keval H. verfasserin (orcid)0000-0002-3800-2402 aut Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 Patel, Dhruvesh (orcid)0000-0002-2074-7158 aut Madhavan, N. (orcid)0000-0002-8001-5370 aut Singh, Sudhir Kumar aut Enthalten in Water conservation science and engineering [Singapore] : Springer Singapore, 2016 8(2023), 1 vom: 26. Sept. (DE-627)858508001 (DE-600)2854650-7 2364-5687 nnns volume:8 year:2023 number:1 day:26 month:09 https://dx.doi.org/10.1007/s41101-023-00223-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2023 1 26 09 |
spelling |
10.1007/s41101-023-00223-x doi (DE-627)SPR05321353X (SPR)s41101-023-00223-x-e DE-627 ger DE-627 rakwb eng Jodhani, Keval H. verfasserin (orcid)0000-0002-3800-2402 aut Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 Patel, Dhruvesh (orcid)0000-0002-2074-7158 aut Madhavan, N. (orcid)0000-0002-8001-5370 aut Singh, Sudhir Kumar aut Enthalten in Water conservation science and engineering [Singapore] : Springer Singapore, 2016 8(2023), 1 vom: 26. Sept. (DE-627)858508001 (DE-600)2854650-7 2364-5687 nnns volume:8 year:2023 number:1 day:26 month:09 https://dx.doi.org/10.1007/s41101-023-00223-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2023 1 26 09 |
allfields_unstemmed |
10.1007/s41101-023-00223-x doi (DE-627)SPR05321353X (SPR)s41101-023-00223-x-e DE-627 ger DE-627 rakwb eng Jodhani, Keval H. verfasserin (orcid)0000-0002-3800-2402 aut Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 Patel, Dhruvesh (orcid)0000-0002-2074-7158 aut Madhavan, N. (orcid)0000-0002-8001-5370 aut Singh, Sudhir Kumar aut Enthalten in Water conservation science and engineering [Singapore] : Springer Singapore, 2016 8(2023), 1 vom: 26. Sept. (DE-627)858508001 (DE-600)2854650-7 2364-5687 nnns volume:8 year:2023 number:1 day:26 month:09 https://dx.doi.org/10.1007/s41101-023-00223-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2023 1 26 09 |
allfieldsGer |
10.1007/s41101-023-00223-x doi (DE-627)SPR05321353X (SPR)s41101-023-00223-x-e DE-627 ger DE-627 rakwb eng Jodhani, Keval H. verfasserin (orcid)0000-0002-3800-2402 aut Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 Patel, Dhruvesh (orcid)0000-0002-2074-7158 aut Madhavan, N. (orcid)0000-0002-8001-5370 aut Singh, Sudhir Kumar aut Enthalten in Water conservation science and engineering [Singapore] : Springer Singapore, 2016 8(2023), 1 vom: 26. Sept. (DE-627)858508001 (DE-600)2854650-7 2364-5687 nnns volume:8 year:2023 number:1 day:26 month:09 https://dx.doi.org/10.1007/s41101-023-00223-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2023 1 26 09 |
allfieldsSound |
10.1007/s41101-023-00223-x doi (DE-627)SPR05321353X (SPR)s41101-023-00223-x-e DE-627 ger DE-627 rakwb eng Jodhani, Keval H. verfasserin (orcid)0000-0002-3800-2402 aut Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 Patel, Dhruvesh (orcid)0000-0002-2074-7158 aut Madhavan, N. (orcid)0000-0002-8001-5370 aut Singh, Sudhir Kumar aut Enthalten in Water conservation science and engineering [Singapore] : Springer Singapore, 2016 8(2023), 1 vom: 26. Sept. (DE-627)858508001 (DE-600)2854650-7 2364-5687 nnns volume:8 year:2023 number:1 day:26 month:09 https://dx.doi.org/10.1007/s41101-023-00223-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 8 2023 1 26 09 |
language |
English |
source |
Enthalten in Water conservation science and engineering 8(2023), 1 vom: 26. Sept. volume:8 year:2023 number:1 day:26 month:09 |
sourceStr |
Enthalten in Water conservation science and engineering 8(2023), 1 vom: 26. Sept. volume:8 year:2023 number:1 day:26 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Soil erosion Revised Universal Soil Loss Equation Google Earth Engine Remote sensing Geographical information system Rel River |
isfreeaccess_bool |
false |
container_title |
Water conservation science and engineering |
authorswithroles_txt_mv |
Jodhani, Keval H. @@aut@@ Patel, Dhruvesh @@aut@@ Madhavan, N. @@aut@@ Singh, Sudhir Kumar @@aut@@ |
publishDateDaySort_date |
2023-09-26T00:00:00Z |
hierarchy_top_id |
858508001 |
id |
SPR05321353X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR05321353X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231064604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231002s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41101-023-00223-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05321353X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41101-023-00223-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jodhani, Keval H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3800-2402</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil erosion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Revised Universal Soil Loss Equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Google Earth Engine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical information system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rel River</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Dhruvesh</subfield><subfield code="0">(orcid)0000-0002-2074-7158</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madhavan, N.</subfield><subfield code="0">(orcid)0000-0002-8001-5370</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Sudhir Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water conservation science and engineering</subfield><subfield code="d">[Singapore] : Springer Singapore, 2016</subfield><subfield code="g">8(2023), 1 vom: 26. Sept.</subfield><subfield code="w">(DE-627)858508001</subfield><subfield code="w">(DE-600)2854650-7</subfield><subfield code="x">2364-5687</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41101-023-00223-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Jodhani, Keval H. |
spellingShingle |
Jodhani, Keval H. misc Soil erosion misc Revised Universal Soil Loss Equation misc Google Earth Engine misc Remote sensing misc Geographical information system misc Rel River Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
authorStr |
Jodhani, Keval H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)858508001 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2364-5687 |
topic_title |
Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India Soil erosion (dpeaa)DE-He213 Revised Universal Soil Loss Equation (dpeaa)DE-He213 Google Earth Engine (dpeaa)DE-He213 Remote sensing (dpeaa)DE-He213 Geographical information system (dpeaa)DE-He213 Rel River (dpeaa)DE-He213 |
topic |
misc Soil erosion misc Revised Universal Soil Loss Equation misc Google Earth Engine misc Remote sensing misc Geographical information system misc Rel River |
topic_unstemmed |
misc Soil erosion misc Revised Universal Soil Loss Equation misc Google Earth Engine misc Remote sensing misc Geographical information system misc Rel River |
topic_browse |
misc Soil erosion misc Revised Universal Soil Loss Equation misc Google Earth Engine misc Remote sensing misc Geographical information system misc Rel River |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water conservation science and engineering |
hierarchy_parent_id |
858508001 |
hierarchy_top_title |
Water conservation science and engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)858508001 (DE-600)2854650-7 |
title |
Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
ctrlnum |
(DE-627)SPR05321353X (SPR)s41101-023-00223-x-e |
title_full |
Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
author_sort |
Jodhani, Keval H. |
journal |
Water conservation science and engineering |
journalStr |
Water conservation science and engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Jodhani, Keval H. Patel, Dhruvesh Madhavan, N. Singh, Sudhir Kumar |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Jodhani, Keval H. |
doi_str_mv |
10.1007/s41101-023-00223-x |
normlink |
(ORCID)0000-0002-3800-2402 (ORCID)0000-0002-2074-7158 (ORCID)0000-0002-8001-5370 |
normlink_prefix_str_mv |
(orcid)0000-0002-3800-2402 (orcid)0000-0002-2074-7158 (orcid)0000-0002-8001-5370 |
title_sort |
soil erosion assessment by rusle, google earth engine, and geospatial techniques over rel river watershed, gujarat, india |
title_auth |
Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
abstract |
Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India |
url |
https://dx.doi.org/10.1007/s41101-023-00223-x |
remote_bool |
true |
author2 |
Patel, Dhruvesh Madhavan, N. Singh, Sudhir Kumar |
author2Str |
Patel, Dhruvesh Madhavan, N. Singh, Sudhir Kumar |
ppnlink |
858508001 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s41101-023-00223-x |
up_date |
2024-07-03T17:53:24.068Z |
_version_ |
1803581342687952897 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR05321353X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231231064604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231002s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41101-023-00223-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05321353X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41101-023-00223-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jodhani, Keval H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3800-2402</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The assessment of soil erosion holds paramount significance in sustainable land management and environmental conservation. In this context, the integration of advanced technologies such as the Revised Universal Soil Loss Equation (RUSLE), Google Earth Engine (GEE), and geospatial techniques presents a formidable approach for evaluating soil erosion dynamics. This integrated methodology proves particularly valuable when applied to the Rel River watershed, where factors such as terrain, land use, and precipitation patterns intricately influence erosion processes. The collective use of two methods, the quantitative method focused on RUSLE to assess soil under various circumstances of erosion and sediment yield, whereas the qualitative approach focused on spectral indices of soil erosion in GEE to generate degradation map. This study was aimed at evaluating soil erosion and land degradation across the Rel River watershed in the western region of Gujarat, India. Soil loss has been estimated using soil loss models, i.e., RUSLE and geoinformation datasets, which were extracted from GEE. The degraded area was prepared using GEE and mapped using geographical information system (GIS). The results demonstrate that estimated value for erosion due to rainfall is 37 to 40 MJ mm $ h^{−1} $ $ ha^{−1} $ $ year^{−1} $, soil erodibility is 0.01 to 0.05 ton h $ MJ^{−1} $ $ mm^{−1} $, topographic variables lies in a range from 0 to 20, and crop management factor is 0.001 to 1. The findings also demonstrate that the total annual soil loss for flood events in 2017 is 35.36 t/ha/year, which is categorized into the severe zone of degradation. According to the soil degradation map created using GEE, the majority of the study region falls into the low and medium degradation zones, while the northeastern part and river fall into the high degradation zone. The findings will be helpful in implementing soil management and conservation techniques to arrest soil erosion in the Rel River watershed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil erosion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Revised Universal Soil Loss Equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Google Earth Engine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical information system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rel River</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Dhruvesh</subfield><subfield code="0">(orcid)0000-0002-2074-7158</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madhavan, N.</subfield><subfield code="0">(orcid)0000-0002-8001-5370</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Sudhir Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water conservation science and engineering</subfield><subfield code="d">[Singapore] : Springer Singapore, 2016</subfield><subfield code="g">8(2023), 1 vom: 26. Sept.</subfield><subfield code="w">(DE-627)858508001</subfield><subfield code="w">(DE-600)2854650-7</subfield><subfield code="x">2364-5687</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41101-023-00223-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401865 |