Finite-Time Synchronization for T–S Fuzzy Complex-Valued Inertial Delayed Neural Networks Via Decomposition Approach

Abstract This paper is mainly dedicated to the issue of finite-time synchronization of T–S fuzzy complex-valued neural networks with time-varying delays and inertial terms via directly constructing Lyapunov functions with separating the original complex-valued neural networks into two real-valued su...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ramajayam, S. [verfasserIn]

Rajavel, S.

Samidurai, R.

Cao, Yang

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Complex-valued neural networks (CVNNs)

Inertial neural networks

T–S fuzzy

Finite-time Synchronization

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Neural processing letters - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1994, 55(2023), 5 vom: 09. Jan., Seite 5885-5903

Übergeordnetes Werk:

volume:55 ; year:2023 ; number:5 ; day:09 ; month:01 ; pages:5885-5903

Links:

Volltext

DOI / URN:

10.1007/s11063-022-11117-9

Katalog-ID:

SPR053249380

Nicht das Richtige dabei?

Schreiben Sie uns!