On the concavity properties of certain arithmetic sequences and polynomials

Abstract Given a sequence %$\alpha =(a_k)_{k\ge 0}%$ of nonnegative numbers, define a new sequence %${\mathcal {L}}(\alpha )=(b_k)_{k\ge 0}%$ by %$b_{k}=a^2_{k}-a_{k-1}a_{k+1}%$. The sequence %$\alpha %$ is called r-log-concave if %${\mathcal {L}}^{i}(\alpha )=\mathcal {L}({\mathcal {L}}^{i-1}(\alph...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhu, Bao-Xuan [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Log-concavity

3-

-Log-concavity

3-Log-concavity

Total positivity

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Mathematische Zeitschrift - Berlin : Springer, 1918, 305(2023), 3 vom: 04. Okt.

Übergeordnetes Werk:

volume:305 ; year:2023 ; number:3 ; day:04 ; month:10

Links:

Volltext

DOI / URN:

10.1007/s00209-023-03361-z

Katalog-ID:

SPR053300289

Nicht das Richtige dabei?

Schreiben Sie uns!