Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct
Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressur...
Ausführliche Beschreibung
Autor*in: |
Swarnalatha, K. V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990, 111(2023), 20 vom: 04. Sept., Seite 18725-18752 |
---|---|
Übergeordnetes Werk: |
volume:111 ; year:2023 ; number:20 ; day:04 ; month:09 ; pages:18725-18752 |
Links: |
---|
DOI / URN: |
10.1007/s11071-023-08860-6 |
---|
Katalog-ID: |
SPR053360192 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053360192 | ||
003 | DE-627 | ||
005 | 20231011064640.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231011s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-023-08860-6 |2 doi | |
035 | |a (DE-627)SPR053360192 | ||
035 | |a (SPR)s11071-023-08860-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Swarnalatha, K. V. |e verfasserin |0 (orcid)0000-0003-2091-040X |4 aut | |
245 | 1 | 0 | |a Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. | ||
650 | 4 | |a Method of multiple scales |7 (dpeaa)DE-He213 | |
650 | 4 | |a Method of averaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linearly uncoupled system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quadratic and cubic nonlinearities |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rani, Sarma L. |0 (orcid)0000-0002-3460-9143 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 |g 111(2023), 20 vom: 04. Sept., Seite 18725-18752 |w (DE-627)315297034 |w (DE-600)2012600-1 |x 1573-269X |7 nnns |
773 | 1 | 8 | |g volume:111 |g year:2023 |g number:20 |g day:04 |g month:09 |g pages:18725-18752 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11071-023-08860-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 111 |j 2023 |e 20 |b 04 |c 09 |h 18725-18752 |
author_variant |
k v s kv kvs s l r sl slr |
---|---|
matchkey_str |
article:1573269X:2023----::utpeclsnlssfhnnieryaisfopeaosi |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11071-023-08860-6 doi (DE-627)SPR053360192 (SPR)s11071-023-08860-6-e DE-627 ger DE-627 rakwb eng Swarnalatha, K. V. verfasserin (orcid)0000-0003-2091-040X aut Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 Rani, Sarma L. (orcid)0000-0002-3460-9143 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 111(2023), 20 vom: 04. Sept., Seite 18725-18752 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 https://dx.doi.org/10.1007/s11071-023-08860-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 111 2023 20 04 09 18725-18752 |
spelling |
10.1007/s11071-023-08860-6 doi (DE-627)SPR053360192 (SPR)s11071-023-08860-6-e DE-627 ger DE-627 rakwb eng Swarnalatha, K. V. verfasserin (orcid)0000-0003-2091-040X aut Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 Rani, Sarma L. (orcid)0000-0002-3460-9143 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 111(2023), 20 vom: 04. Sept., Seite 18725-18752 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 https://dx.doi.org/10.1007/s11071-023-08860-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 111 2023 20 04 09 18725-18752 |
allfields_unstemmed |
10.1007/s11071-023-08860-6 doi (DE-627)SPR053360192 (SPR)s11071-023-08860-6-e DE-627 ger DE-627 rakwb eng Swarnalatha, K. V. verfasserin (orcid)0000-0003-2091-040X aut Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 Rani, Sarma L. (orcid)0000-0002-3460-9143 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 111(2023), 20 vom: 04. Sept., Seite 18725-18752 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 https://dx.doi.org/10.1007/s11071-023-08860-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 111 2023 20 04 09 18725-18752 |
allfieldsGer |
10.1007/s11071-023-08860-6 doi (DE-627)SPR053360192 (SPR)s11071-023-08860-6-e DE-627 ger DE-627 rakwb eng Swarnalatha, K. V. verfasserin (orcid)0000-0003-2091-040X aut Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 Rani, Sarma L. (orcid)0000-0002-3460-9143 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 111(2023), 20 vom: 04. Sept., Seite 18725-18752 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 https://dx.doi.org/10.1007/s11071-023-08860-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 111 2023 20 04 09 18725-18752 |
allfieldsSound |
10.1007/s11071-023-08860-6 doi (DE-627)SPR053360192 (SPR)s11071-023-08860-6-e DE-627 ger DE-627 rakwb eng Swarnalatha, K. V. verfasserin (orcid)0000-0003-2091-040X aut Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 Rani, Sarma L. (orcid)0000-0002-3460-9143 aut Enthalten in Nonlinear dynamics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990 111(2023), 20 vom: 04. Sept., Seite 18725-18752 (DE-627)315297034 (DE-600)2012600-1 1573-269X nnns volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 https://dx.doi.org/10.1007/s11071-023-08860-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 111 2023 20 04 09 18725-18752 |
language |
English |
source |
Enthalten in Nonlinear dynamics 111(2023), 20 vom: 04. Sept., Seite 18725-18752 volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 |
sourceStr |
Enthalten in Nonlinear dynamics 111(2023), 20 vom: 04. Sept., Seite 18725-18752 volume:111 year:2023 number:20 day:04 month:09 pages:18725-18752 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Method of multiple scales Method of averaging Linearly uncoupled system Quadratic and cubic nonlinearities |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Swarnalatha, K. V. @@aut@@ Rani, Sarma L. @@aut@@ |
publishDateDaySort_date |
2023-09-04T00:00:00Z |
hierarchy_top_id |
315297034 |
id |
SPR053360192 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053360192</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231011064640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231011s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-023-08860-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053360192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11071-023-08860-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swarnalatha, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2091-040X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of multiple scales</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linearly uncoupled system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic and cubic nonlinearities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rani, Sarma L.</subfield><subfield code="0">(orcid)0000-0002-3460-9143</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990</subfield><subfield code="g">111(2023), 20 vom: 04. Sept., Seite 18725-18752</subfield><subfield code="w">(DE-627)315297034</subfield><subfield code="w">(DE-600)2012600-1</subfield><subfield code="x">1573-269X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:20</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:18725-18752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11071-023-08860-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2023</subfield><subfield code="e">20</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">18725-18752</subfield></datafield></record></collection>
|
author |
Swarnalatha, K. V. |
spellingShingle |
Swarnalatha, K. V. misc Method of multiple scales misc Method of averaging misc Linearly uncoupled system misc Quadratic and cubic nonlinearities Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
authorStr |
Swarnalatha, K. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)315297034 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-269X |
topic_title |
Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct Method of multiple scales (dpeaa)DE-He213 Method of averaging (dpeaa)DE-He213 Linearly uncoupled system (dpeaa)DE-He213 Quadratic and cubic nonlinearities (dpeaa)DE-He213 |
topic |
misc Method of multiple scales misc Method of averaging misc Linearly uncoupled system misc Quadratic and cubic nonlinearities |
topic_unstemmed |
misc Method of multiple scales misc Method of averaging misc Linearly uncoupled system misc Quadratic and cubic nonlinearities |
topic_browse |
misc Method of multiple scales misc Method of averaging misc Linearly uncoupled system misc Quadratic and cubic nonlinearities |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
315297034 |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)315297034 (DE-600)2012600-1 |
title |
Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
ctrlnum |
(DE-627)SPR053360192 (SPR)s11071-023-08860-6-e |
title_full |
Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
author_sort |
Swarnalatha, K. V. |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
18725 |
author_browse |
Swarnalatha, K. V. Rani, Sarma L. |
container_volume |
111 |
format_se |
Elektronische Aufsätze |
author-letter |
Swarnalatha, K. V. |
doi_str_mv |
10.1007/s11071-023-08860-6 |
normlink |
(ORCID)0000-0003-2091-040X (ORCID)0000-0002-3460-9143 |
normlink_prefix_str_mv |
(orcid)0000-0003-2091-040X (orcid)0000-0002-3460-9143 |
title_sort |
multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-d duct |
title_auth |
Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
abstract |
Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
20 |
title_short |
Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct |
url |
https://dx.doi.org/10.1007/s11071-023-08860-6 |
remote_bool |
true |
author2 |
Rani, Sarma L. |
author2Str |
Rani, Sarma L. |
ppnlink |
315297034 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-023-08860-6 |
up_date |
2024-07-03T18:57:37.356Z |
_version_ |
1803585383151173632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053360192</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231011064640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231011s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-023-08860-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053360192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11071-023-08860-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swarnalatha, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2091-040X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple scales analysis of the nonlinear dynamics of coupled acoustic modes in a quasi 1-D duct</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We derive novel solutions based on the method of multiple scales (MMS) to the nonlinear equations governing the time-dependent amplitudes of coupled acoustic modes in a quasi one-dimensional duct with non-uniform cross-section and axially inhomogeneous mean velocity, temperature and pressure. The modal amplitude equations constitute a multi-degree-of-freedom system of linearly and nonlinearly coupled ordinary differential equations with quadratic and cubic nonlinearities. Due to the presence of both quadratic and cubic terms, the perturbation expansion for the MMS solution necessary includes terms of three orders: %$O(\epsilon )%$, %$O(\epsilon ^2)%$ and %$O(\epsilon ^3)%$, where %$\epsilon %$ is the small parameter. In a recent study Swarnalatha et al. (J Sound Vib 553, 2023), we developed a novel modification of the Krylov–Bogoliubov method of averaging (KBMA) to analytically solve the modal-amplitude equations. The KBMA solutions are included in the present study to compare the MMS and KBMA approaches for the nonlinear equations with and without linear coupling. In general, the MMS and KBMA solutions are in good agreement with each other and with the numerical solutions to the modal amplitude equations. Two representative internal resonance cases that arise in a two-mode system are considered, i.e., %$\omega _2 \approx 2 \omega _1%$ and %$\omega _2 \approx 3 \omega _1%$, where %$\omega _1%$ and %$\omega _2%$ are the linear natural frequencies of the first and second modes. For the %$\omega _2 \approx 2 \omega _1%$ case, both the numerical and KBMA solutions contain low-frequency oscillations in the outer envelope of the limit-cycle oscillations, but the method of multiple scales does not capture these oscillations. It is seen that when the amplitude equations are linearly uncoupled, the low-frequency oscillations in the outer envelope disappear. The criteria for the stability of the limit cycles are analyzed using the MMS and the KBMA solutions and the stability boundaries illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of multiple scales</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linearly uncoupled system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic and cubic nonlinearities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rani, Sarma L.</subfield><subfield code="0">(orcid)0000-0002-3460-9143</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1990</subfield><subfield code="g">111(2023), 20 vom: 04. Sept., Seite 18725-18752</subfield><subfield code="w">(DE-627)315297034</subfield><subfield code="w">(DE-600)2012600-1</subfield><subfield code="x">1573-269X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:20</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:18725-18752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11071-023-08860-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2023</subfield><subfield code="e">20</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">18725-18752</subfield></datafield></record></collection>
|
score |
7.401354 |