A DRL-based online VM scheduler for cost optimization in cloud brokers

Abstract The virtual machine (VM) scheduling problem in cloud brokers that support cloud bursting is fraught with uncertainty due to the on-demand nature of Infrastructure as a Service (IaaS) VMs. Until a VM request is received, the scheduler does not know in advance when it will arrive or what conf...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Li, Xingjia [verfasserIn]

Pan, Li

Liu, Shijun

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Cloud computing

Deep reinforcement learning

Online scheduling

Cloud brokering

Hybrid cloud

Cloud bursting

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: World wide web - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1998, 26(2023), 5 vom: 14. März, Seite 2399-2425

Übergeordnetes Werk:

volume:26 ; year:2023 ; number:5 ; day:14 ; month:03 ; pages:2399-2425

Links:

Volltext

DOI / URN:

10.1007/s11280-023-01145-3

Katalog-ID:

SPR053373367

Nicht das Richtige dabei?

Schreiben Sie uns!