Enhancing quantum support vector machines through variational kernel training

Abstract We introduce a new model in quantum machine learning (QML) that combines the strengths of existing quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM) methods. Our proposed model, quantum variational kernel SVM (QVK-SVM), utilizes quantum kernel and quantum variational algorith...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Innan, N. [verfasserIn]

Khan, M.A.Z.

Panda, B.

Bennai, M.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Quantum machine learning

Quantum support vector machine

Kernel

Quantum variational algorithm

Classification

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Quantum information processing - Dordrecht : Springer Science + Business Media B.V., 2002, 22(2023), 10 vom: 15. Okt.

Übergeordnetes Werk:

volume:22 ; year:2023 ; number:10 ; day:15 ; month:10

Links:

Volltext

DOI / URN:

10.1007/s11128-023-04138-3

Katalog-ID:

SPR053410661

Nicht das Richtige dabei?

Schreiben Sie uns!