Enhanced edge convolution-based spatial-temporal network for network traffic prediction

Abstract Accurately predicting network traffic is helpful for improving a variety of spatial-temporal data mining applications, such as intelligent traffic control, network planning and anomaly detection. The mainstream graph-based methods are limited by the node-level message passing mechanism and...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Hu, Zehua [verfasserIn]

Ruan, Ke

Yu, Weihao

Chen, Siyuan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Network traffic prediction

Edge convolution

Hypergraph neural network

Graph convolutional recurrent network

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 53(2023), 19 vom: 20. Juni, Seite 22031-22043

Übergeordnetes Werk:

volume:53 ; year:2023 ; number:19 ; day:20 ; month:06 ; pages:22031-22043

Links:

Volltext

DOI / URN:

10.1007/s10489-023-04626-0

Katalog-ID:

SPR05344468X

Nicht das Richtige dabei?

Schreiben Sie uns!