Deep embeddings and Graph Neural Networks: using context to improve domain-independent predictions

Abstract Graph neural networks (GNNs) are deep learning architectures that apply graph convolutions through message-passing processes between nodes, represented as embeddings. GNNs have recently become popular because of their ability to obtain a contextual representation of each node taking into ac...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sola, Fernando [verfasserIn]

Ayala, Daniel

Hernández, Inma

Ruiz, David

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Knowledge graphs

Graph neural networks

Attributive embeddings

Deep graph embeddings

Machine learning

Anmerkung:

© The Author(s) 2023

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 53(2023), 19 vom: 28. Juni, Seite 22415-22428

Übergeordnetes Werk:

volume:53 ; year:2023 ; number:19 ; day:28 ; month:06 ; pages:22415-22428

Links:

Volltext

DOI / URN:

10.1007/s10489-023-04685-3

Katalog-ID:

SPR053445007

Nicht das Richtige dabei?

Schreiben Sie uns!