Neuro-fuzzy analytics in athlete development (NueroFATH): a machine learning approach

Abstract Athletes represent the apex of physical capacity filling in a social picture of performance and build. In light of the fundamental contrasts in athletic capacities required for different games, each game demands an alternate body type standard. Because of the decent variety of these body ty...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Rathore, Heena [verfasserIn]

Mohamed, Amr

Guizani, Mohsen

Rathore, Shailendra

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Neuro-fuzzy analytics

Machine learning

Multilayer perceptron model

Fuzzy c-means

Athletes

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - London : Springer, 1993, 35(2021), 33 vom: 09. Feb., Seite 23697-23710

Übergeordnetes Werk:

volume:35 ; year:2021 ; number:33 ; day:09 ; month:02 ; pages:23697-23710

Links:

Volltext

DOI / URN:

10.1007/s00521-021-05704-5

Katalog-ID:

SPR053457021

Nicht das Richtige dabei?

Schreiben Sie uns!