Proximal methods for sparse optimal scoring and discriminant analysis

Abstract Linear discriminant analysis (LDA) is a classical method for dimensionality reduction, where discriminant vectors are sought to project data to a lower dimensional space for optimal separability of classes. Several recent papers have outlined strategies, based on exploiting sparsity of the...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Atkins, Summer [verfasserIn]

Einarsson, Gudmundur

Clemmensen, Line

Ames, Brendan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Sparse discriminant analysis

Optimal scoring

Proximal gradient method

Alternating direction method of multipliers

Anmerkung:

© Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Advances in data analysis and classification - Berlin : Springer, 2007, 17(2022), 4 vom: 21. Dez., Seite 983-1036

Übergeordnetes Werk:

volume:17 ; year:2022 ; number:4 ; day:21 ; month:12 ; pages:983-1036

Links:

Volltext

DOI / URN:

10.1007/s11634-022-00530-6

Katalog-ID:

SPR053460863

Nicht das Richtige dabei?

Schreiben Sie uns!