Recursive least squares method for training and pruning convolutional neural networks

Abstract Convolutional neural networks (CNNs) have shown good performance in many practical applications. However, their high computational and storage requirements make them difficult to deploy on resource-constrained devices. To address this issue, in this paper, we propose a novel iterative struc...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yu, Tianzong [verfasserIn]

Zhang, Chunyuan

Ma, Meng

Wang, Yuan

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Convolutional neural network

Model compression

Structured pruning

Iterative pruning

Recursive least squares

Anmerkung:

© The Author(s) 2023

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 53(2023), 20 vom: 26. Juli, Seite 24603-24618

Übergeordnetes Werk:

volume:53 ; year:2023 ; number:20 ; day:26 ; month:07 ; pages:24603-24618

Links:

Volltext

DOI / URN:

10.1007/s10489-023-04740-z

Katalog-ID:

SPR053488164

Nicht das Richtige dabei?

Schreiben Sie uns!