Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task
Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional...
Ausführliche Beschreibung
Autor*in: |
Gyles, Shannon P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Perception & psychophysics - New York, NY : Springer, 1966, 85(2023), 8 vom: 28. Apr., Seite 2879-2893 |
---|---|
Übergeordnetes Werk: |
volume:85 ; year:2023 ; number:8 ; day:28 ; month:04 ; pages:2879-2893 |
Links: |
---|
DOI / URN: |
10.3758/s13414-023-02652-1 |
---|
Katalog-ID: |
SPR053526422 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053526422 | ||
003 | DE-627 | ||
005 | 20231026064734.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231026s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3758/s13414-023-02652-1 |2 doi | |
035 | |a (DE-627)SPR053526422 | ||
035 | |a (SPR)s13414-023-02652-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Gyles, Shannon P. |e verfasserin |0 (orcid)0000-0001-5079-6033 |4 aut | |
245 | 1 | 0 | |a Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. | ||
650 | 4 | |a Attention |7 (dpeaa)DE-He213 | |
650 | 4 | |a Signal detection theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bayesian modeling |7 (dpeaa)DE-He213 | |
700 | 1 | |a McCarley, Jason S. |0 (orcid)0000-0002-8824-7491 |4 aut | |
700 | 1 | |a Yamani, Yusuke |0 (orcid)0000-0001-8990-0010 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Perception & psychophysics |d New York, NY : Springer, 1966 |g 85(2023), 8 vom: 28. Apr., Seite 2879-2893 |w (DE-627)32818795X |w (DE-600)2045204-4 |x 1532-5962 |7 nnns |
773 | 1 | 8 | |g volume:85 |g year:2023 |g number:8 |g day:28 |g month:04 |g pages:2879-2893 |
856 | 4 | 0 | |u https://dx.doi.org/10.3758/s13414-023-02652-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2020 | ||
951 | |a AR | ||
952 | |d 85 |j 2023 |e 8 |b 28 |c 04 |h 2879-2893 |
author_variant |
s p g sp spg j s m js jsm y y yy |
---|---|
matchkey_str |
article:15325962:2023----::scoercuvseelhneibalpeaengesaen |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3758/s13414-023-02652-1 doi (DE-627)SPR053526422 (SPR)s13414-023-02652-1-e DE-627 ger DE-627 rakwb eng Gyles, Shannon P. verfasserin (orcid)0000-0001-5079-6033 aut Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 McCarley, Jason S. (orcid)0000-0002-8824-7491 aut Yamani, Yusuke (orcid)0000-0001-8990-0010 aut Enthalten in Perception & psychophysics New York, NY : Springer, 1966 85(2023), 8 vom: 28. Apr., Seite 2879-2893 (DE-627)32818795X (DE-600)2045204-4 1532-5962 nnns volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 https://dx.doi.org/10.3758/s13414-023-02652-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 AR 85 2023 8 28 04 2879-2893 |
spelling |
10.3758/s13414-023-02652-1 doi (DE-627)SPR053526422 (SPR)s13414-023-02652-1-e DE-627 ger DE-627 rakwb eng Gyles, Shannon P. verfasserin (orcid)0000-0001-5079-6033 aut Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 McCarley, Jason S. (orcid)0000-0002-8824-7491 aut Yamani, Yusuke (orcid)0000-0001-8990-0010 aut Enthalten in Perception & psychophysics New York, NY : Springer, 1966 85(2023), 8 vom: 28. Apr., Seite 2879-2893 (DE-627)32818795X (DE-600)2045204-4 1532-5962 nnns volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 https://dx.doi.org/10.3758/s13414-023-02652-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 AR 85 2023 8 28 04 2879-2893 |
allfields_unstemmed |
10.3758/s13414-023-02652-1 doi (DE-627)SPR053526422 (SPR)s13414-023-02652-1-e DE-627 ger DE-627 rakwb eng Gyles, Shannon P. verfasserin (orcid)0000-0001-5079-6033 aut Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 McCarley, Jason S. (orcid)0000-0002-8824-7491 aut Yamani, Yusuke (orcid)0000-0001-8990-0010 aut Enthalten in Perception & psychophysics New York, NY : Springer, 1966 85(2023), 8 vom: 28. Apr., Seite 2879-2893 (DE-627)32818795X (DE-600)2045204-4 1532-5962 nnns volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 https://dx.doi.org/10.3758/s13414-023-02652-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 AR 85 2023 8 28 04 2879-2893 |
allfieldsGer |
10.3758/s13414-023-02652-1 doi (DE-627)SPR053526422 (SPR)s13414-023-02652-1-e DE-627 ger DE-627 rakwb eng Gyles, Shannon P. verfasserin (orcid)0000-0001-5079-6033 aut Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 McCarley, Jason S. (orcid)0000-0002-8824-7491 aut Yamani, Yusuke (orcid)0000-0001-8990-0010 aut Enthalten in Perception & psychophysics New York, NY : Springer, 1966 85(2023), 8 vom: 28. Apr., Seite 2879-2893 (DE-627)32818795X (DE-600)2045204-4 1532-5962 nnns volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 https://dx.doi.org/10.3758/s13414-023-02652-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 AR 85 2023 8 28 04 2879-2893 |
allfieldsSound |
10.3758/s13414-023-02652-1 doi (DE-627)SPR053526422 (SPR)s13414-023-02652-1-e DE-627 ger DE-627 rakwb eng Gyles, Shannon P. verfasserin (orcid)0000-0001-5079-6033 aut Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 McCarley, Jason S. (orcid)0000-0002-8824-7491 aut Yamani, Yusuke (orcid)0000-0001-8990-0010 aut Enthalten in Perception & psychophysics New York, NY : Springer, 1966 85(2023), 8 vom: 28. Apr., Seite 2879-2893 (DE-627)32818795X (DE-600)2045204-4 1532-5962 nnns volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 https://dx.doi.org/10.3758/s13414-023-02652-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 AR 85 2023 8 28 04 2879-2893 |
language |
English |
source |
Enthalten in Perception & psychophysics 85(2023), 8 vom: 28. Apr., Seite 2879-2893 volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 |
sourceStr |
Enthalten in Perception & psychophysics 85(2023), 8 vom: 28. Apr., Seite 2879-2893 volume:85 year:2023 number:8 day:28 month:04 pages:2879-2893 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Attention Signal detection theory Bayesian modeling |
isfreeaccess_bool |
false |
container_title |
Perception & psychophysics |
authorswithroles_txt_mv |
Gyles, Shannon P. @@aut@@ McCarley, Jason S. @@aut@@ Yamani, Yusuke @@aut@@ |
publishDateDaySort_date |
2023-04-28T00:00:00Z |
hierarchy_top_id |
32818795X |
id |
SPR053526422 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053526422</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231026064734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231026s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13414-023-02652-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053526422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13414-023-02652-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gyles, Shannon P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5079-6033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal detection theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCarley, Jason S.</subfield><subfield code="0">(orcid)0000-0002-8824-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamani, Yusuke</subfield><subfield code="0">(orcid)0000-0001-8990-0010</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Perception & psychophysics</subfield><subfield code="d">New York, NY : Springer, 1966</subfield><subfield code="g">85(2023), 8 vom: 28. Apr., Seite 2879-2893</subfield><subfield code="w">(DE-627)32818795X</subfield><subfield code="w">(DE-600)2045204-4</subfield><subfield code="x">1532-5962</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:2879-2893</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13414-023-02652-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">2879-2893</subfield></datafield></record></collection>
|
author |
Gyles, Shannon P. |
spellingShingle |
Gyles, Shannon P. misc Attention misc Signal detection theory misc Bayesian modeling Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
authorStr |
Gyles, Shannon P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32818795X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1532-5962 |
topic_title |
Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task Attention (dpeaa)DE-He213 Signal detection theory (dpeaa)DE-He213 Bayesian modeling (dpeaa)DE-He213 |
topic |
misc Attention misc Signal detection theory misc Bayesian modeling |
topic_unstemmed |
misc Attention misc Signal detection theory misc Bayesian modeling |
topic_browse |
misc Attention misc Signal detection theory misc Bayesian modeling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Perception & psychophysics |
hierarchy_parent_id |
32818795X |
hierarchy_top_title |
Perception & psychophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32818795X (DE-600)2045204-4 |
title |
Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
ctrlnum |
(DE-627)SPR053526422 (SPR)s13414-023-02652-1-e |
title_full |
Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
author_sort |
Gyles, Shannon P. |
journal |
Perception & psychophysics |
journalStr |
Perception & psychophysics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
2879 |
author_browse |
Gyles, Shannon P. McCarley, Jason S. Yamani, Yusuke |
container_volume |
85 |
format_se |
Elektronische Aufsätze |
author-letter |
Gyles, Shannon P. |
doi_str_mv |
10.3758/s13414-023-02652-1 |
normlink |
(ORCID)0000-0001-5079-6033 (ORCID)0000-0002-8824-7491 (ORCID)0000-0001-8990-0010 |
normlink_prefix_str_mv |
(orcid)0000-0001-5079-6033 (orcid)0000-0002-8824-7491 (orcid)0000-0001-8990-0010 |
title_sort |
psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
title_auth |
Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
abstract |
Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss. © The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2020 |
container_issue |
8 |
title_short |
Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task |
url |
https://dx.doi.org/10.3758/s13414-023-02652-1 |
remote_bool |
true |
author2 |
McCarley, Jason S. Yamani, Yusuke |
author2Str |
McCarley, Jason S. Yamani, Yusuke |
ppnlink |
32818795X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.3758/s13414-023-02652-1 |
up_date |
2024-07-03T20:10:25.661Z |
_version_ |
1803589963652005888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053526422</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231026064734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231026s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13414-023-02652-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053526422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13414-023-02652-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gyles, Shannon P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5079-6033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Psychometric curves reveal changes in bias, lapse rate, and guess rate in an online vigilance task</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Psychonomic Society, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When human monitors are required to detect infrequent signals among noise, they typically exhibit a decline in correct detections over time. Researchers have attributed this vigilance decrement to three alternative mechanisms: shifts in response bias, losses of sensitivity, and attentional lapses. The current study examined the extent to which changes in these mechanisms contributed to the vigilance decrement in an online monitoring task. Participants in two experiments (N = 102, N = 192) completed an online signal detection task, judging whether the separation between two probes each trial exceeded a criterion value. Separation was varied across trials and data were fit with logistic psychometric curves using Bayesian hierarchical parameter estimation. Parameters representing sensitivity, response bias, attentional lapse rate, and guess rate were compared across the first and last 4 minutes of the vigil. Data gave decisive evidence of conservative bias shifts, an increased attentional lapse rate, and a decreased positive guess rate over time on task, but no strong evidence for or against an effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or attention lapses as causes of the vigilance loss.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal detection theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCarley, Jason S.</subfield><subfield code="0">(orcid)0000-0002-8824-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamani, Yusuke</subfield><subfield code="0">(orcid)0000-0001-8990-0010</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Perception & psychophysics</subfield><subfield code="d">New York, NY : Springer, 1966</subfield><subfield code="g">85(2023), 8 vom: 28. Apr., Seite 2879-2893</subfield><subfield code="w">(DE-627)32818795X</subfield><subfield code="w">(DE-600)2045204-4</subfield><subfield code="x">1532-5962</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:2879-2893</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13414-023-02652-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">2879-2893</subfield></datafield></record></collection>
|
score |
7.401005 |