Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks
Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36...
Ausführliche Beschreibung
Autor*in: |
Zeng, Qinjun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: SN applied sciences - [Cham] : Springer International Publishing, 2019, 5(2023), 11 vom: 29. Okt. |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:11 ; day:29 ; month:10 |
Links: |
---|
DOI / URN: |
10.1007/s42452-023-05515-4 |
---|
Katalog-ID: |
SPR053570278 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053570278 | ||
003 | DE-627 | ||
005 | 20231030064608.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231030s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-023-05515-4 |2 doi | |
035 | |a (DE-627)SPR053570278 | ||
035 | |a (SPR)s42452-023-05515-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zeng, Qinjun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. | ||
520 | |a Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. | ||
650 | 4 | |a Dynamically complex networks |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sampled-data controlling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Asymptotical synchronization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Exponential synchronization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Jiang, Minghui |4 aut | |
700 | 1 | |a Hu, Junhao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SN applied sciences |d [Cham] : Springer International Publishing, 2019 |g 5(2023), 11 vom: 29. Okt. |w (DE-627)103761139X |w (DE-600)2947292-1 |x 2523-3971 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:11 |g day:29 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42452-023-05515-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 11 |b 29 |c 10 |
author_variant |
q z qz m j mj j h jh |
---|---|
matchkey_str |
article:25233971:2023----::rearxaeitgaieultefrapedtsnhoiainot |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s42452-023-05515-4 doi (DE-627)SPR053570278 (SPR)s42452-023-05515-4-e DE-627 ger DE-627 rakwb eng Zeng, Qinjun verfasserin aut Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 Jiang, Minghui aut Hu, Junhao aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 11 vom: 29. Okt. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:11 day:29 month:10 https://dx.doi.org/10.1007/s42452-023-05515-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 11 29 10 |
spelling |
10.1007/s42452-023-05515-4 doi (DE-627)SPR053570278 (SPR)s42452-023-05515-4-e DE-627 ger DE-627 rakwb eng Zeng, Qinjun verfasserin aut Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 Jiang, Minghui aut Hu, Junhao aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 11 vom: 29. Okt. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:11 day:29 month:10 https://dx.doi.org/10.1007/s42452-023-05515-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 11 29 10 |
allfields_unstemmed |
10.1007/s42452-023-05515-4 doi (DE-627)SPR053570278 (SPR)s42452-023-05515-4-e DE-627 ger DE-627 rakwb eng Zeng, Qinjun verfasserin aut Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 Jiang, Minghui aut Hu, Junhao aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 11 vom: 29. Okt. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:11 day:29 month:10 https://dx.doi.org/10.1007/s42452-023-05515-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 11 29 10 |
allfieldsGer |
10.1007/s42452-023-05515-4 doi (DE-627)SPR053570278 (SPR)s42452-023-05515-4-e DE-627 ger DE-627 rakwb eng Zeng, Qinjun verfasserin aut Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 Jiang, Minghui aut Hu, Junhao aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 11 vom: 29. Okt. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:11 day:29 month:10 https://dx.doi.org/10.1007/s42452-023-05515-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 11 29 10 |
allfieldsSound |
10.1007/s42452-023-05515-4 doi (DE-627)SPR053570278 (SPR)s42452-023-05515-4-e DE-627 ger DE-627 rakwb eng Zeng, Qinjun verfasserin aut Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 Jiang, Minghui aut Hu, Junhao aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 11 vom: 29. Okt. (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:11 day:29 month:10 https://dx.doi.org/10.1007/s42452-023-05515-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 11 29 10 |
language |
English |
source |
Enthalten in SN applied sciences 5(2023), 11 vom: 29. Okt. volume:5 year:2023 number:11 day:29 month:10 |
sourceStr |
Enthalten in SN applied sciences 5(2023), 11 vom: 29. Okt. volume:5 year:2023 number:11 day:29 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dynamically complex networks Sampled-data controlling Asymptotical synchronization Exponential synchronization |
isfreeaccess_bool |
true |
container_title |
SN applied sciences |
authorswithroles_txt_mv |
Zeng, Qinjun @@aut@@ Jiang, Minghui @@aut@@ Hu, Junhao @@aut@@ |
publishDateDaySort_date |
2023-10-29T00:00:00Z |
hierarchy_top_id |
103761139X |
id |
SPR053570278 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053570278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231030064608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05515-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053570278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05515-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Qinjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamically complex networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampled-data controlling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotical synchronization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential synchronization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Minghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Junhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 11 vom: 29. Okt.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05515-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">11</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Zeng, Qinjun |
spellingShingle |
Zeng, Qinjun misc Dynamically complex networks misc Sampled-data controlling misc Asymptotical synchronization misc Exponential synchronization Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
authorStr |
Zeng, Qinjun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3971 |
topic_title |
Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks Dynamically complex networks (dpeaa)DE-He213 Sampled-data controlling (dpeaa)DE-He213 Asymptotical synchronization (dpeaa)DE-He213 Exponential synchronization (dpeaa)DE-He213 |
topic |
misc Dynamically complex networks misc Sampled-data controlling misc Asymptotical synchronization misc Exponential synchronization |
topic_unstemmed |
misc Dynamically complex networks misc Sampled-data controlling misc Asymptotical synchronization misc Exponential synchronization |
topic_browse |
misc Dynamically complex networks misc Sampled-data controlling misc Asymptotical synchronization misc Exponential synchronization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN applied sciences |
hierarchy_parent_id |
103761139X |
hierarchy_top_title |
SN applied sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)103761139X (DE-600)2947292-1 |
title |
Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
ctrlnum |
(DE-627)SPR053570278 (SPR)s42452-023-05515-4-e |
title_full |
Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
author_sort |
Zeng, Qinjun |
journal |
SN applied sciences |
journalStr |
SN applied sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zeng, Qinjun Jiang, Minghui Hu, Junhao |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Zeng, Qinjun |
doi_str_mv |
10.1007/s42452-023-05515-4 |
title_sort |
free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
title_auth |
Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
abstract |
Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. © The Author(s) 2023 |
abstractGer |
Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. © The Author(s) 2023 |
abstract_unstemmed |
Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results. Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks |
url |
https://dx.doi.org/10.1007/s42452-023-05515-4 |
remote_bool |
true |
author2 |
Jiang, Minghui Hu, Junhao |
author2Str |
Jiang, Minghui Hu, Junhao |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-023-05515-4 |
up_date |
2024-07-03T20:28:41.251Z |
_version_ |
1803591112463482880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053570278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231030064608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231030s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05515-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053570278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05515-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Qinjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The issue of synchronizing delayed and complicated dynamical networks (CDNs) using sampling data is examined in this research. First, modified free-matrix-based integral inequalities (MFMBIIs), respectively, are generated from the current free-matrix-based integral inequalities (FMBIIs) [36] and [37] to optimize CDNs’ sampled-data synchronizing control’s efficiency. Following that, the intended data sampling controller is put forth to asymptotically and exponentially synchronize the CDNs by deploying the time-associated Lyapunov functional technique and convexity-based combining approach, which fully utilize the acceptable information with respect to the actual sampling interval. Finally, computational instances verify the validity of the present outcomes and especially show that a larger upper bound of the sampling interval can be obtained from our results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article highlights Time-dependent continuous Lyapunov functions are created with sufficient reliable data about the current sampling sequence to lower the restrictiveness of the suggested conclusions.Modified free-matrix-based integral inequalities (MFMBIIs) are proposed.Numerical examples demonstrate how our findings can be used to get a larger upper constraint on the sampling interval.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamically complex networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampled-data controlling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotical synchronization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential synchronization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Minghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Junhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 11 vom: 29. Okt.</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:11</subfield><subfield code="g">day:29</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05515-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">11</subfield><subfield code="b">29</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.402135 |