The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions
Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of la...
Ausführliche Beschreibung
Autor*in: |
AlSayed, Ahmed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Water resources recovery facilities |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Reviews in environmental science and bio-technology - Dordrecht : Springer Science + Business Media B.V., 2002, 22(2023), 4 vom: 22. Okt., Seite 1009-1035 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2023 ; number:4 ; day:22 ; month:10 ; pages:1009-1035 |
Links: |
---|
DOI / URN: |
10.1007/s11157-023-09673-0 |
---|
Katalog-ID: |
SPR053574680 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053574680 | ||
003 | DE-627 | ||
005 | 20231031064638.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231031s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11157-023-09673-0 |2 doi | |
035 | |a (DE-627)SPR053574680 | ||
035 | |a (SPR)s11157-023-09673-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a AlSayed, Ahmed |e verfasserin |4 aut | |
245 | 1 | 4 | |a The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. | ||
650 | 4 | |a Water resources recovery facilities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon redirection |7 (dpeaa)DE-He213 | |
650 | 4 | |a A-stage |7 (dpeaa)DE-He213 | |
650 | 4 | |a High rate activated sludge |7 (dpeaa)DE-He213 | |
650 | 4 | |a High rate contact stabilization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bioflocculation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Energy self-sufficiency |7 (dpeaa)DE-He213 | |
700 | 1 | |a Soliman, Moomen |4 aut | |
700 | 1 | |a Eldyasti, Ahmed |0 (orcid)0000-0003-4861-5875 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Reviews in environmental science and bio-technology |d Dordrecht : Springer Science + Business Media B.V., 2002 |g 22(2023), 4 vom: 22. Okt., Seite 1009-1035 |w (DE-627)346231760 |w (DE-600)2076953-2 |x 1572-9826 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2023 |g number:4 |g day:22 |g month:10 |g pages:1009-1035 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11157-023-09673-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2023 |e 4 |b 22 |c 10 |h 1009-1035 |
author_variant |
a a aa m s ms a e ae |
---|---|
matchkey_str |
article:15729826:2023----::hatgpoesormtbolcuainnmcoiltrgfrabneietocretese |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11157-023-09673-0 doi (DE-627)SPR053574680 (SPR)s11157-023-09673-0-e DE-627 ger DE-627 rakwb eng AlSayed, Ahmed verfasserin aut The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 Soliman, Moomen aut Eldyasti, Ahmed (orcid)0000-0003-4861-5875 aut Enthalten in Reviews in environmental science and bio-technology Dordrecht : Springer Science + Business Media B.V., 2002 22(2023), 4 vom: 22. Okt., Seite 1009-1035 (DE-627)346231760 (DE-600)2076953-2 1572-9826 nnns volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 https://dx.doi.org/10.1007/s11157-023-09673-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 22 2023 4 22 10 1009-1035 |
spelling |
10.1007/s11157-023-09673-0 doi (DE-627)SPR053574680 (SPR)s11157-023-09673-0-e DE-627 ger DE-627 rakwb eng AlSayed, Ahmed verfasserin aut The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 Soliman, Moomen aut Eldyasti, Ahmed (orcid)0000-0003-4861-5875 aut Enthalten in Reviews in environmental science and bio-technology Dordrecht : Springer Science + Business Media B.V., 2002 22(2023), 4 vom: 22. Okt., Seite 1009-1035 (DE-627)346231760 (DE-600)2076953-2 1572-9826 nnns volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 https://dx.doi.org/10.1007/s11157-023-09673-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 22 2023 4 22 10 1009-1035 |
allfields_unstemmed |
10.1007/s11157-023-09673-0 doi (DE-627)SPR053574680 (SPR)s11157-023-09673-0-e DE-627 ger DE-627 rakwb eng AlSayed, Ahmed verfasserin aut The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 Soliman, Moomen aut Eldyasti, Ahmed (orcid)0000-0003-4861-5875 aut Enthalten in Reviews in environmental science and bio-technology Dordrecht : Springer Science + Business Media B.V., 2002 22(2023), 4 vom: 22. Okt., Seite 1009-1035 (DE-627)346231760 (DE-600)2076953-2 1572-9826 nnns volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 https://dx.doi.org/10.1007/s11157-023-09673-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 22 2023 4 22 10 1009-1035 |
allfieldsGer |
10.1007/s11157-023-09673-0 doi (DE-627)SPR053574680 (SPR)s11157-023-09673-0-e DE-627 ger DE-627 rakwb eng AlSayed, Ahmed verfasserin aut The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 Soliman, Moomen aut Eldyasti, Ahmed (orcid)0000-0003-4861-5875 aut Enthalten in Reviews in environmental science and bio-technology Dordrecht : Springer Science + Business Media B.V., 2002 22(2023), 4 vom: 22. Okt., Seite 1009-1035 (DE-627)346231760 (DE-600)2076953-2 1572-9826 nnns volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 https://dx.doi.org/10.1007/s11157-023-09673-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 22 2023 4 22 10 1009-1035 |
allfieldsSound |
10.1007/s11157-023-09673-0 doi (DE-627)SPR053574680 (SPR)s11157-023-09673-0-e DE-627 ger DE-627 rakwb eng AlSayed, Ahmed verfasserin aut The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 Soliman, Moomen aut Eldyasti, Ahmed (orcid)0000-0003-4861-5875 aut Enthalten in Reviews in environmental science and bio-technology Dordrecht : Springer Science + Business Media B.V., 2002 22(2023), 4 vom: 22. Okt., Seite 1009-1035 (DE-627)346231760 (DE-600)2076953-2 1572-9826 nnns volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 https://dx.doi.org/10.1007/s11157-023-09673-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 22 2023 4 22 10 1009-1035 |
language |
English |
source |
Enthalten in Reviews in environmental science and bio-technology 22(2023), 4 vom: 22. Okt., Seite 1009-1035 volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 |
sourceStr |
Enthalten in Reviews in environmental science and bio-technology 22(2023), 4 vom: 22. Okt., Seite 1009-1035 volume:22 year:2023 number:4 day:22 month:10 pages:1009-1035 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Water resources recovery facilities Carbon redirection A-stage High rate activated sludge High rate contact stabilization Bioflocculation Energy self-sufficiency |
isfreeaccess_bool |
false |
container_title |
Reviews in environmental science and bio-technology |
authorswithroles_txt_mv |
AlSayed, Ahmed @@aut@@ Soliman, Moomen @@aut@@ Eldyasti, Ahmed @@aut@@ |
publishDateDaySort_date |
2023-10-22T00:00:00Z |
hierarchy_top_id |
346231760 |
id |
SPR053574680 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053574680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231031064638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231031s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11157-023-09673-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053574680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11157-023-09673-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">AlSayed, Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water resources recovery facilities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon redirection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A-stage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High rate activated sludge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High rate contact stabilization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioflocculation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy self-sufficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soliman, Moomen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eldyasti, Ahmed</subfield><subfield code="0">(orcid)0000-0003-4861-5875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reviews in environmental science and bio-technology</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V., 2002</subfield><subfield code="g">22(2023), 4 vom: 22. Okt., Seite 1009-1035</subfield><subfield code="w">(DE-627)346231760</subfield><subfield code="w">(DE-600)2076953-2</subfield><subfield code="x">1572-9826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1009-1035</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11157-023-09673-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">1009-1035</subfield></datafield></record></collection>
|
author |
AlSayed, Ahmed |
spellingShingle |
AlSayed, Ahmed misc Water resources recovery facilities misc Carbon redirection misc A-stage misc High rate activated sludge misc High rate contact stabilization misc Bioflocculation misc Energy self-sufficiency The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
authorStr |
AlSayed, Ahmed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)346231760 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9826 |
topic_title |
The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions Water resources recovery facilities (dpeaa)DE-He213 Carbon redirection (dpeaa)DE-He213 A-stage (dpeaa)DE-He213 High rate activated sludge (dpeaa)DE-He213 High rate contact stabilization (dpeaa)DE-He213 Bioflocculation (dpeaa)DE-He213 Energy self-sufficiency (dpeaa)DE-He213 |
topic |
misc Water resources recovery facilities misc Carbon redirection misc A-stage misc High rate activated sludge misc High rate contact stabilization misc Bioflocculation misc Energy self-sufficiency |
topic_unstemmed |
misc Water resources recovery facilities misc Carbon redirection misc A-stage misc High rate activated sludge misc High rate contact stabilization misc Bioflocculation misc Energy self-sufficiency |
topic_browse |
misc Water resources recovery facilities misc Carbon redirection misc A-stage misc High rate activated sludge misc High rate contact stabilization misc Bioflocculation misc Energy self-sufficiency |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Reviews in environmental science and bio-technology |
hierarchy_parent_id |
346231760 |
hierarchy_top_title |
Reviews in environmental science and bio-technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)346231760 (DE-600)2076953-2 |
title |
The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
ctrlnum |
(DE-627)SPR053574680 (SPR)s11157-023-09673-0-e |
title_full |
The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
author_sort |
AlSayed, Ahmed |
journal |
Reviews in environmental science and bio-technology |
journalStr |
Reviews in environmental science and bio-technology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1009 |
author_browse |
AlSayed, Ahmed Soliman, Moomen Eldyasti, Ahmed |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
AlSayed, Ahmed |
doi_str_mv |
10.1007/s11157-023-09673-0 |
normlink |
(ORCID)0000-0003-4861-5875 |
normlink_prefix_str_mv |
(orcid)0000-0003-4861-5875 |
title_sort |
a-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
title_auth |
The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
abstract |
Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution. © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions |
url |
https://dx.doi.org/10.1007/s11157-023-09673-0 |
remote_bool |
true |
author2 |
Soliman, Moomen Eldyasti, Ahmed |
author2Str |
Soliman, Moomen Eldyasti, Ahmed |
ppnlink |
346231760 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11157-023-09673-0 |
up_date |
2024-07-03T20:30:37.314Z |
_version_ |
1803591234162262016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053574680</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231031064638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231031s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11157-023-09673-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053574680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11157-023-09673-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">AlSayed, Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A progressive shift from energy-intensive wastewater treatment plants toward sustainable water resource recovery facilities (WRRFs) has gained traction over the years. The A-stage coupled with the B-stage shortcut biological nitrogen removal is enticing, owing to its efficacy in terms of land and energy conservation. This paper is a critical review of the A-stage process that provides a mechanistic understanding of its performance in terms of removal mechanisms, and the influence of its operational parameters. In accordance, future research directions are suggested to deepen the current understanding of the process, develop alternative technologies, and build more efficient WRRFs. Several factors such as HRT, SRT, DO concentration, OLR, chemical oxygen demand (COD) mass load, reactor VSS, feeding regime (i.e., feast/famine), and feast-to-famine retention time ratio independently affect the A-stage process. These factors alternate the substrate acquisition-based mechanisms from being transitional/preparatory mechanisms and typically overlooked in the conventional activated sludge process to critical removal mechanisms in the A-stage process. Although the influence of SRT on the A-stage process has been widely studied, this study demonstrated that SRT should be determined according to the influent COD fractionation and mass load. Moreover, it was inferred that a high DO concentration allows for high bioflocculation and storage under controlled SRT and HRT. Further research is needed to better understand the influence of HRT and feast-to-famine retention time ratio. Furthermore, there are discrepancies regarding the actual selection pressures that induce the substrate acquisition-based mechanisms which require further investigation and resolution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water resources recovery facilities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon redirection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A-stage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High rate activated sludge</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High rate contact stabilization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioflocculation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy self-sufficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soliman, Moomen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eldyasti, Ahmed</subfield><subfield code="0">(orcid)0000-0003-4861-5875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reviews in environmental science and bio-technology</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V., 2002</subfield><subfield code="g">22(2023), 4 vom: 22. Okt., Seite 1009-1035</subfield><subfield code="w">(DE-627)346231760</subfield><subfield code="w">(DE-600)2076953-2</subfield><subfield code="x">1572-9826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1009-1035</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11157-023-09673-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">1009-1035</subfield></datafield></record></collection>
|
score |
7.400943 |