Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online
Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studi...
Ausführliche Beschreibung
Autor*in: |
Hartman, Rachel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Behavior research methods, instruments & computers - Austin, Tex. : Psychonomic Society Publ., 1984, 55(2022), 7 vom: 21. Sept., Seite 3313-3325 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2022 ; number:7 ; day:21 ; month:09 ; pages:3313-3325 |
Links: |
---|
DOI / URN: |
10.3758/s13428-022-01944-y |
---|
Katalog-ID: |
SPR053579585 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053579585 | ||
003 | DE-627 | ||
005 | 20231031064645.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231031s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3758/s13428-022-01944-y |2 doi | |
035 | |a (DE-627)SPR053579585 | ||
035 | |a (SPR)s13428-022-01944-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hartman, Rachel |e verfasserin |0 (orcid)0000-0001-9714-3224 |4 aut | |
245 | 1 | 0 | |a Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. | ||
650 | 4 | |a Amazon Mechanical Turk |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data quality |7 (dpeaa)DE-He213 | |
650 | 4 | |a Age verification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Online research |7 (dpeaa)DE-He213 | |
700 | 1 | |a Moss, Aaron J. |4 aut | |
700 | 1 | |a Rabinowitz, Israel |4 aut | |
700 | 1 | |a Bahn, Nathaniel |4 aut | |
700 | 1 | |a Rosenzweig, Cheskie |4 aut | |
700 | 1 | |a Robinson, Jonathan |4 aut | |
700 | 1 | |a Litman, Leib |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Behavior research methods, instruments & computers |d Austin, Tex. : Psychonomic Society Publ., 1984 |g 55(2022), 7 vom: 21. Sept., Seite 3313-3325 |w (DE-627)32998067X |w (DE-600)2048669-8 |x 1532-5970 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2022 |g number:7 |g day:21 |g month:09 |g pages:3313-3325 |
856 | 4 | 0 | |u https://dx.doi.org/10.3758/s13428-022-01944-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 55 |j 2022 |e 7 |b 21 |c 09 |h 3313-3325 |
author_variant |
r h rh a j m aj ajm i r ir n b nb c r cr j r jr l l ll |
---|---|
matchkey_str |
article:15325970:2022----::ookoteolblyetneaaekoldeoeiy |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3758/s13428-022-01944-y doi (DE-627)SPR053579585 (SPR)s13428-022-01944-y-e DE-627 ger DE-627 rakwb eng Hartman, Rachel verfasserin (orcid)0000-0001-9714-3224 aut Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 Moss, Aaron J. aut Rabinowitz, Israel aut Bahn, Nathaniel aut Rosenzweig, Cheskie aut Robinson, Jonathan aut Litman, Leib aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 55(2022), 7 vom: 21. Sept., Seite 3313-3325 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 https://dx.doi.org/10.3758/s13428-022-01944-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 55 2022 7 21 09 3313-3325 |
spelling |
10.3758/s13428-022-01944-y doi (DE-627)SPR053579585 (SPR)s13428-022-01944-y-e DE-627 ger DE-627 rakwb eng Hartman, Rachel verfasserin (orcid)0000-0001-9714-3224 aut Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 Moss, Aaron J. aut Rabinowitz, Israel aut Bahn, Nathaniel aut Rosenzweig, Cheskie aut Robinson, Jonathan aut Litman, Leib aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 55(2022), 7 vom: 21. Sept., Seite 3313-3325 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 https://dx.doi.org/10.3758/s13428-022-01944-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 55 2022 7 21 09 3313-3325 |
allfields_unstemmed |
10.3758/s13428-022-01944-y doi (DE-627)SPR053579585 (SPR)s13428-022-01944-y-e DE-627 ger DE-627 rakwb eng Hartman, Rachel verfasserin (orcid)0000-0001-9714-3224 aut Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 Moss, Aaron J. aut Rabinowitz, Israel aut Bahn, Nathaniel aut Rosenzweig, Cheskie aut Robinson, Jonathan aut Litman, Leib aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 55(2022), 7 vom: 21. Sept., Seite 3313-3325 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 https://dx.doi.org/10.3758/s13428-022-01944-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 55 2022 7 21 09 3313-3325 |
allfieldsGer |
10.3758/s13428-022-01944-y doi (DE-627)SPR053579585 (SPR)s13428-022-01944-y-e DE-627 ger DE-627 rakwb eng Hartman, Rachel verfasserin (orcid)0000-0001-9714-3224 aut Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 Moss, Aaron J. aut Rabinowitz, Israel aut Bahn, Nathaniel aut Rosenzweig, Cheskie aut Robinson, Jonathan aut Litman, Leib aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 55(2022), 7 vom: 21. Sept., Seite 3313-3325 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 https://dx.doi.org/10.3758/s13428-022-01944-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 55 2022 7 21 09 3313-3325 |
allfieldsSound |
10.3758/s13428-022-01944-y doi (DE-627)SPR053579585 (SPR)s13428-022-01944-y-e DE-627 ger DE-627 rakwb eng Hartman, Rachel verfasserin (orcid)0000-0001-9714-3224 aut Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 Moss, Aaron J. aut Rabinowitz, Israel aut Bahn, Nathaniel aut Rosenzweig, Cheskie aut Robinson, Jonathan aut Litman, Leib aut Enthalten in Behavior research methods, instruments & computers Austin, Tex. : Psychonomic Society Publ., 1984 55(2022), 7 vom: 21. Sept., Seite 3313-3325 (DE-627)32998067X (DE-600)2048669-8 1532-5970 nnns volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 https://dx.doi.org/10.3758/s13428-022-01944-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 AR 55 2022 7 21 09 3313-3325 |
language |
English |
source |
Enthalten in Behavior research methods, instruments & computers 55(2022), 7 vom: 21. Sept., Seite 3313-3325 volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 |
sourceStr |
Enthalten in Behavior research methods, instruments & computers 55(2022), 7 vom: 21. Sept., Seite 3313-3325 volume:55 year:2022 number:7 day:21 month:09 pages:3313-3325 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amazon Mechanical Turk Data quality Age verification Online research |
isfreeaccess_bool |
false |
container_title |
Behavior research methods, instruments & computers |
authorswithroles_txt_mv |
Hartman, Rachel @@aut@@ Moss, Aaron J. @@aut@@ Rabinowitz, Israel @@aut@@ Bahn, Nathaniel @@aut@@ Rosenzweig, Cheskie @@aut@@ Robinson, Jonathan @@aut@@ Litman, Leib @@aut@@ |
publishDateDaySort_date |
2022-09-21T00:00:00Z |
hierarchy_top_id |
32998067X |
id |
SPR053579585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053579585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231031064645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231031s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13428-022-01944-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053579585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13428-022-01944-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hartman, Rachel</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9714-3224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amazon Mechanical Turk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Age verification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online research</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moss, Aaron J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabinowitz, Israel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bahn, Nathaniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenzweig, Cheskie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Jonathan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Litman, Leib</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Behavior research methods, instruments & computers</subfield><subfield code="d">Austin, Tex. : Psychonomic Society Publ., 1984</subfield><subfield code="g">55(2022), 7 vom: 21. Sept., Seite 3313-3325</subfield><subfield code="w">(DE-627)32998067X</subfield><subfield code="w">(DE-600)2048669-8</subfield><subfield code="x">1532-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3313-3325</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13428-022-01944-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield><subfield code="h">3313-3325</subfield></datafield></record></collection>
|
author |
Hartman, Rachel |
spellingShingle |
Hartman, Rachel misc Amazon Mechanical Turk misc Data quality misc Age verification misc Online research Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
authorStr |
Hartman, Rachel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32998067X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1532-5970 |
topic_title |
Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online Amazon Mechanical Turk (dpeaa)DE-He213 Data quality (dpeaa)DE-He213 Age verification (dpeaa)DE-He213 Online research (dpeaa)DE-He213 |
topic |
misc Amazon Mechanical Turk misc Data quality misc Age verification misc Online research |
topic_unstemmed |
misc Amazon Mechanical Turk misc Data quality misc Age verification misc Online research |
topic_browse |
misc Amazon Mechanical Turk misc Data quality misc Age verification misc Online research |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Behavior research methods, instruments & computers |
hierarchy_parent_id |
32998067X |
hierarchy_top_title |
Behavior research methods, instruments & computers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32998067X (DE-600)2048669-8 |
title |
Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
ctrlnum |
(DE-627)SPR053579585 (SPR)s13428-022-01944-y-e |
title_full |
Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
author_sort |
Hartman, Rachel |
journal |
Behavior research methods, instruments & computers |
journalStr |
Behavior research methods, instruments & computers |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
3313 |
author_browse |
Hartman, Rachel Moss, Aaron J. Rabinowitz, Israel Bahn, Nathaniel Rosenzweig, Cheskie Robinson, Jonathan Litman, Leib |
container_volume |
55 |
format_se |
Elektronische Aufsätze |
author-letter |
Hartman, Rachel |
doi_str_mv |
10.3758/s13428-022-01944-y |
normlink |
(ORCID)0000-0001-9714-3224 |
normlink_prefix_str_mv |
(orcid)0000-0001-9714-3224 |
title_sort |
do you know the wooly bully? testing era-based knowledge to verify participant age online |
title_auth |
Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
abstract |
Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies. © The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 |
container_issue |
7 |
title_short |
Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online |
url |
https://dx.doi.org/10.3758/s13428-022-01944-y |
remote_bool |
true |
author2 |
Moss, Aaron J. Rabinowitz, Israel Bahn, Nathaniel Rosenzweig, Cheskie Robinson, Jonathan Litman, Leib |
author2Str |
Moss, Aaron J. Rabinowitz, Israel Bahn, Nathaniel Rosenzweig, Cheskie Robinson, Jonathan Litman, Leib |
ppnlink |
32998067X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.3758/s13428-022-01944-y |
up_date |
2024-07-03T20:32:47.048Z |
_version_ |
1803591370198220800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053579585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231031064645.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231031s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3758/s13428-022-01944-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053579585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13428-022-01944-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hartman, Rachel</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9714-3224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Do you know the Wooly Bully? Testing era-based knowledge to verify participant age online</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Psychonomic Society, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract People in online studies sometimes misrepresent themselves. Regardless of their motive for doing so, participant misrepresentation threatens the validity of research. Here, we propose and evaluate a way to verify the age of online respondents: a test of era-based knowledge. Across six studies (N = 1543), participants of various ages completed an age verification instrument. The instrument assessed familiarity with cultural phenomena (e.g., songs and TV shows) from decades past and present. We consistently found that our instrument discriminated between people of different ages. In Studies 1a and 1b, self-reported age correlated strongly with performance on the instrument (mean r = .8). In Study 2, the instrument reliably detected imposters who we knew were misrepresenting their age. For impostors, self-reported age did not correlate with performance on the instrument (r = .077). Finally, in Studies 3a, 3b, and 3c, the instrument remained robust with African Americans, people from low educational backgrounds, and recent immigrants to the United States. Thus, our instrument shows promise for verifying the age of online respondents, and, as we discuss, our approach of assessing “insider knowledge” holds great promise for verifying other identities within online studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amazon Mechanical Turk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Age verification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online research</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moss, Aaron J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rabinowitz, Israel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bahn, Nathaniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenzweig, Cheskie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Jonathan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Litman, Leib</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Behavior research methods, instruments & computers</subfield><subfield code="d">Austin, Tex. : Psychonomic Society Publ., 1984</subfield><subfield code="g">55(2022), 7 vom: 21. Sept., Seite 3313-3325</subfield><subfield code="w">(DE-627)32998067X</subfield><subfield code="w">(DE-600)2048669-8</subfield><subfield code="x">1532-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3313-3325</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.3758/s13428-022-01944-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield><subfield code="h">3313-3325</subfield></datafield></record></collection>
|
score |
7.4007854 |