Context-Aware Semantic Type Identification for Relational Attributes
Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards acr...
Ausführliche Beschreibung
Autor*in: |
Ding, Yue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Institute of Computing Technology, Chinese Academy of Sciences 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computer science and technology - Boston, Mass. [u.a.] : Springer, 1986, 38(2023), 4 vom: Juli, Seite 927-946 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2023 ; number:4 ; month:07 ; pages:927-946 |
Links: |
---|
DOI / URN: |
10.1007/s11390-021-1048-y |
---|
Katalog-ID: |
SPR053679695 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053679695 | ||
003 | DE-627 | ||
005 | 20231110064659.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231110s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11390-021-1048-y |2 doi | |
035 | |a (DE-627)SPR053679695 | ||
035 | |a (SPR)s11390-021-1048-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ding, Yue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Context-Aware Semantic Type Identification for Relational Attributes |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Institute of Computing Technology, Chinese Academy of Sciences 2023 | ||
520 | |a Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. | ||
650 | 4 | |a attribute semantic type (AST) identification |7 (dpeaa)DE-He213 | |
650 | 4 | |a context-aware |7 (dpeaa)DE-He213 | |
650 | 4 | |a semantic embedding |7 (dpeaa)DE-He213 | |
650 | 4 | |a knowledge base embedding |7 (dpeaa)DE-He213 | |
700 | 1 | |a Guo, Yu-He |4 aut | |
700 | 1 | |a Lu, Wei |4 aut | |
700 | 1 | |a Li, Hai-Xiang |4 aut | |
700 | 1 | |a Zhang, Mei-Hui |4 aut | |
700 | 1 | |a Li, Hui |4 aut | |
700 | 1 | |a Pan, An-Qun |4 aut | |
700 | 1 | |a Du, Xiao-Yong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of computer science and technology |d Boston, Mass. [u.a.] : Springer, 1986 |g 38(2023), 4 vom: Juli, Seite 927-946 |w (DE-627)50872516X |w (DE-600)2224868-7 |x 1860-4749 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2023 |g number:4 |g month:07 |g pages:927-946 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11390-021-1048-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2023 |e 4 |c 07 |h 927-946 |
author_variant |
y d yd y h g yhg w l wl h x l hxl m h z mhz h l hl a q p aqp x y d xyd |
---|---|
matchkey_str |
article:18604749:2023----::otxaaeeatcyedniiainorl |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11390-021-1048-y doi (DE-627)SPR053679695 (SPR)s11390-021-1048-y-e DE-627 ger DE-627 rakwb eng Ding, Yue verfasserin aut Context-Aware Semantic Type Identification for Relational Attributes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Computing Technology, Chinese Academy of Sciences 2023 Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 Guo, Yu-He aut Lu, Wei aut Li, Hai-Xiang aut Zhang, Mei-Hui aut Li, Hui aut Pan, An-Qun aut Du, Xiao-Yong aut Enthalten in Journal of computer science and technology Boston, Mass. [u.a.] : Springer, 1986 38(2023), 4 vom: Juli, Seite 927-946 (DE-627)50872516X (DE-600)2224868-7 1860-4749 nnns volume:38 year:2023 number:4 month:07 pages:927-946 https://dx.doi.org/10.1007/s11390-021-1048-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 4 07 927-946 |
spelling |
10.1007/s11390-021-1048-y doi (DE-627)SPR053679695 (SPR)s11390-021-1048-y-e DE-627 ger DE-627 rakwb eng Ding, Yue verfasserin aut Context-Aware Semantic Type Identification for Relational Attributes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Computing Technology, Chinese Academy of Sciences 2023 Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 Guo, Yu-He aut Lu, Wei aut Li, Hai-Xiang aut Zhang, Mei-Hui aut Li, Hui aut Pan, An-Qun aut Du, Xiao-Yong aut Enthalten in Journal of computer science and technology Boston, Mass. [u.a.] : Springer, 1986 38(2023), 4 vom: Juli, Seite 927-946 (DE-627)50872516X (DE-600)2224868-7 1860-4749 nnns volume:38 year:2023 number:4 month:07 pages:927-946 https://dx.doi.org/10.1007/s11390-021-1048-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 4 07 927-946 |
allfields_unstemmed |
10.1007/s11390-021-1048-y doi (DE-627)SPR053679695 (SPR)s11390-021-1048-y-e DE-627 ger DE-627 rakwb eng Ding, Yue verfasserin aut Context-Aware Semantic Type Identification for Relational Attributes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Computing Technology, Chinese Academy of Sciences 2023 Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 Guo, Yu-He aut Lu, Wei aut Li, Hai-Xiang aut Zhang, Mei-Hui aut Li, Hui aut Pan, An-Qun aut Du, Xiao-Yong aut Enthalten in Journal of computer science and technology Boston, Mass. [u.a.] : Springer, 1986 38(2023), 4 vom: Juli, Seite 927-946 (DE-627)50872516X (DE-600)2224868-7 1860-4749 nnns volume:38 year:2023 number:4 month:07 pages:927-946 https://dx.doi.org/10.1007/s11390-021-1048-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 4 07 927-946 |
allfieldsGer |
10.1007/s11390-021-1048-y doi (DE-627)SPR053679695 (SPR)s11390-021-1048-y-e DE-627 ger DE-627 rakwb eng Ding, Yue verfasserin aut Context-Aware Semantic Type Identification for Relational Attributes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Computing Technology, Chinese Academy of Sciences 2023 Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 Guo, Yu-He aut Lu, Wei aut Li, Hai-Xiang aut Zhang, Mei-Hui aut Li, Hui aut Pan, An-Qun aut Du, Xiao-Yong aut Enthalten in Journal of computer science and technology Boston, Mass. [u.a.] : Springer, 1986 38(2023), 4 vom: Juli, Seite 927-946 (DE-627)50872516X (DE-600)2224868-7 1860-4749 nnns volume:38 year:2023 number:4 month:07 pages:927-946 https://dx.doi.org/10.1007/s11390-021-1048-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 4 07 927-946 |
allfieldsSound |
10.1007/s11390-021-1048-y doi (DE-627)SPR053679695 (SPR)s11390-021-1048-y-e DE-627 ger DE-627 rakwb eng Ding, Yue verfasserin aut Context-Aware Semantic Type Identification for Relational Attributes 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Computing Technology, Chinese Academy of Sciences 2023 Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 Guo, Yu-He aut Lu, Wei aut Li, Hai-Xiang aut Zhang, Mei-Hui aut Li, Hui aut Pan, An-Qun aut Du, Xiao-Yong aut Enthalten in Journal of computer science and technology Boston, Mass. [u.a.] : Springer, 1986 38(2023), 4 vom: Juli, Seite 927-946 (DE-627)50872516X (DE-600)2224868-7 1860-4749 nnns volume:38 year:2023 number:4 month:07 pages:927-946 https://dx.doi.org/10.1007/s11390-021-1048-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 38 2023 4 07 927-946 |
language |
English |
source |
Enthalten in Journal of computer science and technology 38(2023), 4 vom: Juli, Seite 927-946 volume:38 year:2023 number:4 month:07 pages:927-946 |
sourceStr |
Enthalten in Journal of computer science and technology 38(2023), 4 vom: Juli, Seite 927-946 volume:38 year:2023 number:4 month:07 pages:927-946 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
attribute semantic type (AST) identification context-aware semantic embedding knowledge base embedding |
isfreeaccess_bool |
false |
container_title |
Journal of computer science and technology |
authorswithroles_txt_mv |
Ding, Yue @@aut@@ Guo, Yu-He @@aut@@ Lu, Wei @@aut@@ Li, Hai-Xiang @@aut@@ Zhang, Mei-Hui @@aut@@ Li, Hui @@aut@@ Pan, An-Qun @@aut@@ Du, Xiao-Yong @@aut@@ |
publishDateDaySort_date |
2023-07-01T00:00:00Z |
hierarchy_top_id |
50872516X |
id |
SPR053679695 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053679695</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231110064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231110s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11390-021-1048-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053679695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11390-021-1048-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Context-Aware Semantic Type Identification for Relational Attributes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Computing Technology, Chinese Academy of Sciences 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attribute semantic type (AST) identification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">context-aware</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semantic embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge base embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yu-He</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hai-Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mei-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, An-Qun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Xiao-Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computer science and technology</subfield><subfield code="d">Boston, Mass. [u.a.] : Springer, 1986</subfield><subfield code="g">38(2023), 4 vom: Juli, Seite 927-946</subfield><subfield code="w">(DE-627)50872516X</subfield><subfield code="w">(DE-600)2224868-7</subfield><subfield code="x">1860-4749</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:927-946</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11390-021-1048-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">927-946</subfield></datafield></record></collection>
|
author |
Ding, Yue |
spellingShingle |
Ding, Yue misc attribute semantic type (AST) identification misc context-aware misc semantic embedding misc knowledge base embedding Context-Aware Semantic Type Identification for Relational Attributes |
authorStr |
Ding, Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)50872516X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1860-4749 |
topic_title |
Context-Aware Semantic Type Identification for Relational Attributes attribute semantic type (AST) identification (dpeaa)DE-He213 context-aware (dpeaa)DE-He213 semantic embedding (dpeaa)DE-He213 knowledge base embedding (dpeaa)DE-He213 |
topic |
misc attribute semantic type (AST) identification misc context-aware misc semantic embedding misc knowledge base embedding |
topic_unstemmed |
misc attribute semantic type (AST) identification misc context-aware misc semantic embedding misc knowledge base embedding |
topic_browse |
misc attribute semantic type (AST) identification misc context-aware misc semantic embedding misc knowledge base embedding |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of computer science and technology |
hierarchy_parent_id |
50872516X |
hierarchy_top_title |
Journal of computer science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)50872516X (DE-600)2224868-7 |
title |
Context-Aware Semantic Type Identification for Relational Attributes |
ctrlnum |
(DE-627)SPR053679695 (SPR)s11390-021-1048-y-e |
title_full |
Context-Aware Semantic Type Identification for Relational Attributes |
author_sort |
Ding, Yue |
journal |
Journal of computer science and technology |
journalStr |
Journal of computer science and technology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
927 |
author_browse |
Ding, Yue Guo, Yu-He Lu, Wei Li, Hai-Xiang Zhang, Mei-Hui Li, Hui Pan, An-Qun Du, Xiao-Yong |
container_volume |
38 |
format_se |
Elektronische Aufsätze |
author-letter |
Ding, Yue |
doi_str_mv |
10.1007/s11390-021-1048-y |
title_sort |
context-aware semantic type identification for relational attributes |
title_auth |
Context-Aware Semantic Type Identification for Relational Attributes |
abstract |
Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. © Institute of Computing Technology, Chinese Academy of Sciences 2023 |
abstractGer |
Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. © Institute of Computing Technology, Chinese Academy of Sciences 2023 |
abstract_unstemmed |
Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively. © Institute of Computing Technology, Chinese Academy of Sciences 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Context-Aware Semantic Type Identification for Relational Attributes |
url |
https://dx.doi.org/10.1007/s11390-021-1048-y |
remote_bool |
true |
author2 |
Guo, Yu-He Lu, Wei Li, Hai-Xiang Zhang, Mei-Hui Li, Hui Pan, An-Qun Du, Xiao-Yong |
author2Str |
Guo, Yu-He Lu, Wei Li, Hai-Xiang Zhang, Mei-Hui Li, Hui Pan, An-Qun Du, Xiao-Yong |
ppnlink |
50872516X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11390-021-1048-y |
up_date |
2024-07-03T21:15:53.895Z |
_version_ |
1803594082703900672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053679695</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231110064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231110s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11390-021-1048-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053679695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11390-021-1048-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Context-Aware Semantic Type Identification for Relational Attributes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Computing Technology, Chinese Academy of Sciences 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro average F1 score, and up to 0.28% and 9.56% in terms of weighted F1 score over high-quality and low-quality datasets respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attribute semantic type (AST) identification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">context-aware</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semantic embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">knowledge base embedding</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yu-He</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hai-Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mei-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, An-Qun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Xiao-Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computer science and technology</subfield><subfield code="d">Boston, Mass. [u.a.] : Springer, 1986</subfield><subfield code="g">38(2023), 4 vom: Juli, Seite 927-946</subfield><subfield code="w">(DE-627)50872516X</subfield><subfield code="w">(DE-600)2224868-7</subfield><subfield code="x">1860-4749</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:927-946</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11390-021-1048-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2023</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">927-946</subfield></datafield></record></collection>
|
score |
7.4014273 |