G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics
Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However,...
Ausführliche Beschreibung
Autor*in: |
Wang, Ruimin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 24(2023), 1 vom: 14. Nov. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:1 ; day:14 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s12859-023-05525-4 |
---|
Katalog-ID: |
SPR053739124 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053739124 | ||
003 | DE-627 | ||
005 | 20231115064701.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231115s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12859-023-05525-4 |2 doi | |
035 | |a (DE-627)SPR053739124 | ||
035 | |a (SPR)s12859-023-05525-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Ruimin |e verfasserin |4 aut | |
245 | 1 | 0 | |a G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. | ||
650 | 4 | |a LC–MS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feature alignment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multidimensional assignment problem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Combinatorial optimization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lu, Miaoshan |4 aut | |
700 | 1 | |a An, Shaowei |4 aut | |
700 | 1 | |a Wang, Jinyin |4 aut | |
700 | 1 | |a Yu, Changbin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 24(2023), 1 vom: 14. Nov. |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:1 |g day:14 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12859-023-05525-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 1 |b 14 |c 11 |
author_variant |
r w rw m l ml s a sa j w jw c y cy |
---|---|
matchkey_str |
article:14712105:2023----::ainrgahaefauelgmnmtofrnagtd |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12859-023-05525-4 doi (DE-627)SPR053739124 (SPR)s12859-023-05525-4-e DE-627 ger DE-627 rakwb eng Wang, Ruimin verfasserin aut G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 Lu, Miaoshan aut An, Shaowei aut Wang, Jinyin aut Yu, Changbin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 24(2023), 1 vom: 14. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:24 year:2023 number:1 day:14 month:11 https://dx.doi.org/10.1186/s12859-023-05525-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 14 11 |
spelling |
10.1186/s12859-023-05525-4 doi (DE-627)SPR053739124 (SPR)s12859-023-05525-4-e DE-627 ger DE-627 rakwb eng Wang, Ruimin verfasserin aut G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 Lu, Miaoshan aut An, Shaowei aut Wang, Jinyin aut Yu, Changbin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 24(2023), 1 vom: 14. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:24 year:2023 number:1 day:14 month:11 https://dx.doi.org/10.1186/s12859-023-05525-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 14 11 |
allfields_unstemmed |
10.1186/s12859-023-05525-4 doi (DE-627)SPR053739124 (SPR)s12859-023-05525-4-e DE-627 ger DE-627 rakwb eng Wang, Ruimin verfasserin aut G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 Lu, Miaoshan aut An, Shaowei aut Wang, Jinyin aut Yu, Changbin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 24(2023), 1 vom: 14. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:24 year:2023 number:1 day:14 month:11 https://dx.doi.org/10.1186/s12859-023-05525-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 14 11 |
allfieldsGer |
10.1186/s12859-023-05525-4 doi (DE-627)SPR053739124 (SPR)s12859-023-05525-4-e DE-627 ger DE-627 rakwb eng Wang, Ruimin verfasserin aut G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 Lu, Miaoshan aut An, Shaowei aut Wang, Jinyin aut Yu, Changbin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 24(2023), 1 vom: 14. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:24 year:2023 number:1 day:14 month:11 https://dx.doi.org/10.1186/s12859-023-05525-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 14 11 |
allfieldsSound |
10.1186/s12859-023-05525-4 doi (DE-627)SPR053739124 (SPR)s12859-023-05525-4-e DE-627 ger DE-627 rakwb eng Wang, Ruimin verfasserin aut G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 Lu, Miaoshan aut An, Shaowei aut Wang, Jinyin aut Yu, Changbin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 24(2023), 1 vom: 14. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:24 year:2023 number:1 day:14 month:11 https://dx.doi.org/10.1186/s12859-023-05525-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 14 11 |
language |
English |
source |
Enthalten in BMC bioinformatics 24(2023), 1 vom: 14. Nov. volume:24 year:2023 number:1 day:14 month:11 |
sourceStr |
Enthalten in BMC bioinformatics 24(2023), 1 vom: 14. Nov. volume:24 year:2023 number:1 day:14 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
LC–MS Feature alignment Multidimensional assignment problem Combinatorial optimization |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Wang, Ruimin @@aut@@ Lu, Miaoshan @@aut@@ An, Shaowei @@aut@@ Wang, Jinyin @@aut@@ Yu, Changbin @@aut@@ |
publishDateDaySort_date |
2023-11-14T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR053739124 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053739124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231115064701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-023-05525-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053739124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-023-05525-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Ruimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC–MS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional assignment problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Miaoshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Shaowei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinyin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Changbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">24(2023), 1 vom: 14. Nov.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-023-05525-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Wang, Ruimin |
spellingShingle |
Wang, Ruimin misc LC–MS misc Feature alignment misc Multidimensional assignment problem misc Combinatorial optimization G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
authorStr |
Wang, Ruimin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics LC–MS (dpeaa)DE-He213 Feature alignment (dpeaa)DE-He213 Multidimensional assignment problem (dpeaa)DE-He213 Combinatorial optimization (dpeaa)DE-He213 |
topic |
misc LC–MS misc Feature alignment misc Multidimensional assignment problem misc Combinatorial optimization |
topic_unstemmed |
misc LC–MS misc Feature alignment misc Multidimensional assignment problem misc Combinatorial optimization |
topic_browse |
misc LC–MS misc Feature alignment misc Multidimensional assignment problem misc Combinatorial optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
ctrlnum |
(DE-627)SPR053739124 (SPR)s12859-023-05525-4-e |
title_full |
G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
author_sort |
Wang, Ruimin |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Wang, Ruimin Lu, Miaoshan An, Shaowei Wang, Jinyin Yu, Changbin |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Ruimin |
doi_str_mv |
10.1186/s12859-023-05525-4 |
title_sort |
g-aligner: a graph-based feature alignment method for untargeted lc–ms-based metabolomics |
title_auth |
G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
abstract |
Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. © The Author(s) 2023 |
abstractGer |
Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. © The Author(s) 2023 |
abstract_unstemmed |
Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics |
url |
https://dx.doi.org/10.1186/s12859-023-05525-4 |
remote_bool |
true |
author2 |
Lu, Miaoshan An, Shaowei Wang, Jinyin Yu, Changbin |
author2Str |
Lu, Miaoshan An, Shaowei Wang, Jinyin Yu, Changbin |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12859-023-05525-4 |
up_date |
2024-07-03T21:40:59.452Z |
_version_ |
1803595661396934656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053739124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231115064701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231115s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-023-05525-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053739124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-023-05525-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Ruimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">G-Aligner: a graph-based feature alignment method for untargeted LC–MS-based metabolomics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Liquid chromatography–mass spectrometry is widely used in untargeted metabolomics for composition profiling. In multi-run analysis scenarios, features of each run are aligned into consensus features by feature alignment algorithms to observe the intensity variations across runs. However, most of the existing feature alignment methods focus more on accurate retention time correction, while underestimating the importance of feature matching. None of the existing methods can comprehensively consider feature correspondences among all runs and achieve optimal matching. Results To comprehensively analyze feature correspondences among runs, we propose G-Aligner, a graph-based feature alignment method for untargeted LC–MS data. In the feature matching stage, G-Aligner treats features and potential correspondences as nodes and edges in a multipartite graph, considers the multi-run feature matching problem an unbalanced multidimensional assignment problem, and provides three combinatorial optimization algorithms to find optimal matching solutions. In comparison with the feature alignment methods in OpenMS, MZmine2 and XCMS on three public metabolomics benchmark datasets, G-Aligner achieved the best feature alignment performance on all the three datasets with up to 9.8% and 26.6% increase in accurately aligned features and analytes, and helped all comparison software obtain more accurate results on their self-extracted features by integrating G-Aligner to their analysis workflow. G-Aligner is open-source and freely available at https://github.com/CSi-Studio/G-Aligner under a permissive license. Benchmark datasets, manual annotation results, evaluation methods and results are available at https://doi.org/10.5281/zenodo.8313034 Conclusions In this study, we proposed G-Aligner to improve feature matching accuracy for untargeted metabolomics LC–MS data. G-Aligner comprehensively considered potential feature correspondences between all runs, converting the feature matching problem as a multidimensional assignment problem (MAP). In evaluations on three public metabolomics benchmark datasets, G-Aligner achieved the highest alignment accuracy on manual annotated and popular software extracted features, proving the effectiveness and robustness of the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LC–MS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidimensional assignment problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Miaoshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Shaowei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jinyin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Changbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">24(2023), 1 vom: 14. Nov.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-023-05525-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401045 |