Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion
Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax inv...
Ausführliche Beschreibung
Autor*in: |
Nguyen, Thau Sy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 16(2023), 1 vom: 19. Nov. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:1 ; day:19 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s13071-023-06031-5 |
---|
Katalog-ID: |
SPR053790383 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053790383 | ||
003 | DE-627 | ||
005 | 20231120064802.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231120s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13071-023-06031-5 |2 doi | |
035 | |a (DE-627)SPR053790383 | ||
035 | |a (SPR)s13071-023-06031-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Nguyen, Thau Sy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract | ||
650 | 4 | |a Ligand |7 (dpeaa)DE-He213 | |
650 | 4 | |a Receptor |7 (dpeaa)DE-He213 | |
650 | 4 | |a PvMTRAP |7 (dpeaa)DE-He213 | |
650 | 4 | |a CD36 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interaction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Park, Ji-Hoon |4 aut | |
700 | 1 | |a Nguyen, Tuyet-Kha |4 aut | |
700 | 1 | |a Nguyen, Truong Van |4 aut | |
700 | 1 | |a Lee, Seong-Kyun |4 aut | |
700 | 1 | |a Na, Sung-Hun |4 aut | |
700 | 1 | |a Han, Jin-Hee |4 aut | |
700 | 1 | |a Park, Won-Sun |4 aut | |
700 | 1 | |a Chun, Wanjoo |4 aut | |
700 | 1 | |a Lu, Feng |4 aut | |
700 | 1 | |a Han, Eun-Taek |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 16(2023), 1 vom: 19. Nov. |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:1 |g day:19 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13071-023-06031-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 1 |b 19 |c 11 |
author_variant |
t s n ts tsn j h p jhp t k n tkn t v n tv tvn s k l skl s h n shn j h h jhh w s p wsp w c wc f l fl e t h eth |
---|---|
matchkey_str |
article:17563305:2023----::lsoimiamrziepcfchobsodneaeaoyosrtipmrpneatwthmnd6ugsignvliad |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s13071-023-06031-5 doi (DE-627)SPR053790383 (SPR)s13071-023-06031-5-e DE-627 ger DE-627 rakwb eng Nguyen, Thau Sy verfasserin aut Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 Park, Ji-Hoon aut Nguyen, Tuyet-Kha aut Nguyen, Truong Van aut Lee, Seong-Kyun aut Na, Sung-Hun aut Han, Jin-Hee aut Park, Won-Sun aut Chun, Wanjoo aut Lu, Feng aut Han, Eun-Taek aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 19. Nov. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:19 month:11 https://dx.doi.org/10.1186/s13071-023-06031-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 19 11 |
spelling |
10.1186/s13071-023-06031-5 doi (DE-627)SPR053790383 (SPR)s13071-023-06031-5-e DE-627 ger DE-627 rakwb eng Nguyen, Thau Sy verfasserin aut Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 Park, Ji-Hoon aut Nguyen, Tuyet-Kha aut Nguyen, Truong Van aut Lee, Seong-Kyun aut Na, Sung-Hun aut Han, Jin-Hee aut Park, Won-Sun aut Chun, Wanjoo aut Lu, Feng aut Han, Eun-Taek aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 19. Nov. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:19 month:11 https://dx.doi.org/10.1186/s13071-023-06031-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 19 11 |
allfields_unstemmed |
10.1186/s13071-023-06031-5 doi (DE-627)SPR053790383 (SPR)s13071-023-06031-5-e DE-627 ger DE-627 rakwb eng Nguyen, Thau Sy verfasserin aut Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 Park, Ji-Hoon aut Nguyen, Tuyet-Kha aut Nguyen, Truong Van aut Lee, Seong-Kyun aut Na, Sung-Hun aut Han, Jin-Hee aut Park, Won-Sun aut Chun, Wanjoo aut Lu, Feng aut Han, Eun-Taek aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 19. Nov. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:19 month:11 https://dx.doi.org/10.1186/s13071-023-06031-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 19 11 |
allfieldsGer |
10.1186/s13071-023-06031-5 doi (DE-627)SPR053790383 (SPR)s13071-023-06031-5-e DE-627 ger DE-627 rakwb eng Nguyen, Thau Sy verfasserin aut Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 Park, Ji-Hoon aut Nguyen, Tuyet-Kha aut Nguyen, Truong Van aut Lee, Seong-Kyun aut Na, Sung-Hun aut Han, Jin-Hee aut Park, Won-Sun aut Chun, Wanjoo aut Lu, Feng aut Han, Eun-Taek aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 19. Nov. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:19 month:11 https://dx.doi.org/10.1186/s13071-023-06031-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 19 11 |
allfieldsSound |
10.1186/s13071-023-06031-5 doi (DE-627)SPR053790383 (SPR)s13071-023-06031-5-e DE-627 ger DE-627 rakwb eng Nguyen, Thau Sy verfasserin aut Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 Park, Ji-Hoon aut Nguyen, Tuyet-Kha aut Nguyen, Truong Van aut Lee, Seong-Kyun aut Na, Sung-Hun aut Han, Jin-Hee aut Park, Won-Sun aut Chun, Wanjoo aut Lu, Feng aut Han, Eun-Taek aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 19. Nov. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:19 month:11 https://dx.doi.org/10.1186/s13071-023-06031-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 19 11 |
language |
English |
source |
Enthalten in Parasites & vectors 16(2023), 1 vom: 19. Nov. volume:16 year:2023 number:1 day:19 month:11 |
sourceStr |
Enthalten in Parasites & vectors 16(2023), 1 vom: 19. Nov. volume:16 year:2023 number:1 day:19 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ligand Receptor PvMTRAP CD36 Interaction |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Nguyen, Thau Sy @@aut@@ Park, Ji-Hoon @@aut@@ Nguyen, Tuyet-Kha @@aut@@ Nguyen, Truong Van @@aut@@ Lee, Seong-Kyun @@aut@@ Na, Sung-Hun @@aut@@ Han, Jin-Hee @@aut@@ Park, Won-Sun @@aut@@ Chun, Wanjoo @@aut@@ Lu, Feng @@aut@@ Han, Eun-Taek @@aut@@ |
publishDateDaySort_date |
2023-11-19T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR053790383 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053790383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231120064802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231120s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-023-06031-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053790383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-023-06031-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Thau Sy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ligand</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receptor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PvMTRAP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD36</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Ji-Hoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Tuyet-Kha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Truong Van</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Seong-Kyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Na, Sung-Hun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Jin-Hee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Won-Sun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chun, Wanjoo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Eun-Taek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">16(2023), 1 vom: 19. Nov.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-023-06031-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Nguyen, Thau Sy |
spellingShingle |
Nguyen, Thau Sy misc Ligand misc Receptor misc PvMTRAP misc CD36 misc Interaction Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
authorStr |
Nguyen, Thau Sy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion Ligand (dpeaa)DE-He213 Receptor (dpeaa)DE-He213 PvMTRAP (dpeaa)DE-He213 CD36 (dpeaa)DE-He213 Interaction (dpeaa)DE-He213 |
topic |
misc Ligand misc Receptor misc PvMTRAP misc CD36 misc Interaction |
topic_unstemmed |
misc Ligand misc Receptor misc PvMTRAP misc CD36 misc Interaction |
topic_browse |
misc Ligand misc Receptor misc PvMTRAP misc CD36 misc Interaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
ctrlnum |
(DE-627)SPR053790383 (SPR)s13071-023-06031-5-e |
title_full |
Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
author_sort |
Nguyen, Thau Sy |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Nguyen, Thau Sy Park, Ji-Hoon Nguyen, Tuyet-Kha Nguyen, Truong Van Lee, Seong-Kyun Na, Sung-Hun Han, Jin-Hee Park, Won-Sun Chun, Wanjoo Lu, Feng Han, Eun-Taek |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Nguyen, Thau Sy |
doi_str_mv |
10.1186/s13071-023-06031-5 |
title_sort |
plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (pvmtrap) interacts with human cd36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
title_auth |
Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
abstract |
Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract © The Author(s) 2023 |
abstractGer |
Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract © The Author(s) 2023 |
abstract_unstemmed |
Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion |
url |
https://dx.doi.org/10.1186/s13071-023-06031-5 |
remote_bool |
true |
author2 |
Park, Ji-Hoon Nguyen, Tuyet-Kha Nguyen, Truong Van Lee, Seong-Kyun Na, Sung-Hun Han, Jin-Hee Park, Won-Sun Chun, Wanjoo Lu, Feng Han, Eun-Taek |
author2Str |
Park, Ji-Hoon Nguyen, Tuyet-Kha Nguyen, Truong Van Lee, Seong-Kyun Na, Sung-Hun Han, Jin-Hee Park, Won-Sun Chun, Wanjoo Lu, Feng Han, Eun-Taek |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13071-023-06031-5 |
up_date |
2024-07-03T22:03:15.511Z |
_version_ |
1803597062354239488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053790383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231120064802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231120s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-023-06031-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053790383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-023-06031-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nguyen, Thau Sy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand–receptor interaction for reticulocyte invasion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled. Methods A library of reticulocyte receptors and P. vivax ligands were expressed by a HEK293E mammalian cell expression system and were then used to screen the interaction using enzyme-linked immunosorbent assay (ELISA). A flow cytometry-based erythrocyte binding assay and bio-layer interferometry experiment were further utilized to cellularly and quantitatively identify the ligand‒receptor interaction, respectively. Results Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) was found to interact with human CD36 using systematic screening. This interaction was specific at a molecular level from in vitro analysis and comparable to that of P. vivax Duffy binding protein (PvDBP) and Duffy antigen receptor for chemokines (DARC) (KD: 37.0 ± 1.4 nM and 7.7 ± 0.5 nM, respectively). Flow cytometry indicated that PvMTRAP preferentially binds to reticulocytes, on which CD36 is selectively present. Conclusions Human CD36 is selectively abundant on reticulocytes and is able to interact specifically with PvMTRAP, suggesting that it may function as a ligand and receptor during the invasion of reticulocytes by P. vivax. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ligand</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receptor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PvMTRAP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD36</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Ji-Hoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Tuyet-Kha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Truong Van</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Seong-Kyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Na, Sung-Hun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Jin-Hee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Won-Sun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chun, Wanjoo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Eun-Taek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">16(2023), 1 vom: 19. Nov.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-023-06031-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.3993254 |