An adaptive graph sampling framework for graph analytics

Abstract In large-scale data processing, graph analytics of complex interaction networks are indispensable. As the whole graph processing and analytics can be inefficient and usually impractical, graph sampling by keeping a portion of the original graph becomes a favorable approach. While prior work...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Kewen [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Graph sampling

Adaptive sampling

Graph analytics

Social networks

Representativeness

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Social network analysis and mining - Wien : Springer, 2011, 14(2023), 1 vom: 06. Dez.

Übergeordnetes Werk:

volume:14 ; year:2023 ; number:1 ; day:06 ; month:12

Links:

Volltext

DOI / URN:

10.1007/s13278-023-01157-x

Katalog-ID:

SPR054003725

Nicht das Richtige dabei?

Schreiben Sie uns!