Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators
Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have a...
Ausführliche Beschreibung
Autor*in: |
Li, Dong-Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Science China materials - Beijing : Science China Press, 2014, 66(2023), 12 vom: 24. Nov., Seite 4764-4772 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2023 ; number:12 ; day:24 ; month:11 ; pages:4764-4772 |
Links: |
---|
DOI / URN: |
10.1007/s40843-023-2649-1 |
---|
Katalog-ID: |
SPR054052599 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054052599 | ||
003 | DE-627 | ||
005 | 20231212064705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231212s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40843-023-2649-1 |2 doi | |
035 | |a (DE-627)SPR054052599 | ||
035 | |a (SPR)s40843-023-2649-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Dong-Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press 2023 | ||
520 | |a Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. | ||
650 | 4 | |a zero-dimension hybrid cuprous halides |7 (dpeaa)DE-He213 | |
650 | 4 | |a photo-luminescence |7 (dpeaa)DE-He213 | |
650 | 4 | |a radioluminescence |7 (dpeaa)DE-He213 | |
650 | 4 | |a X-ray imaging |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tan, Qingwen |4 aut | |
700 | 1 | |a Ren, Meng-Ping |4 aut | |
700 | 1 | |a Wang, Wen-Qi |4 aut | |
700 | 1 | |a Zhang, Bing-Lin |4 aut | |
700 | 1 | |a Niu, Guangda |4 aut | |
700 | 1 | |a Gong, Zhongliang |4 aut | |
700 | 1 | |a Lei, Xiao-Wu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science China materials |d Beijing : Science China Press, 2014 |g 66(2023), 12 vom: 24. Nov., Seite 4764-4772 |w (DE-627)815914733 |w (DE-600)2806677-7 |x 2199-4501 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2023 |g number:12 |g day:24 |g month:11 |g pages:4764-4772 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40843-023-2649-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 66 |j 2023 |e 12 |b 24 |c 11 |h 4764-4772 |
author_variant |
d y l dyl q t qt m p r mpr w q w wqw b l z blz g n gn z g zg x w l xwl |
---|---|
matchkey_str |
article:21994501:2023----::erntbodaduiecncposaieaolsessihyfi |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s40843-023-2649-1 doi (DE-627)SPR054052599 (SPR)s40843-023-2649-1-e DE-627 ger DE-627 rakwb eng Li, Dong-Yang verfasserin aut Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 Tan, Qingwen aut Ren, Meng-Ping aut Wang, Wen-Qi aut Zhang, Bing-Lin aut Niu, Guangda aut Gong, Zhongliang aut Lei, Xiao-Wu aut Enthalten in Science China materials Beijing : Science China Press, 2014 66(2023), 12 vom: 24. Nov., Seite 4764-4772 (DE-627)815914733 (DE-600)2806677-7 2199-4501 nnns volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 https://dx.doi.org/10.1007/s40843-023-2649-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 66 2023 12 24 11 4764-4772 |
spelling |
10.1007/s40843-023-2649-1 doi (DE-627)SPR054052599 (SPR)s40843-023-2649-1-e DE-627 ger DE-627 rakwb eng Li, Dong-Yang verfasserin aut Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 Tan, Qingwen aut Ren, Meng-Ping aut Wang, Wen-Qi aut Zhang, Bing-Lin aut Niu, Guangda aut Gong, Zhongliang aut Lei, Xiao-Wu aut Enthalten in Science China materials Beijing : Science China Press, 2014 66(2023), 12 vom: 24. Nov., Seite 4764-4772 (DE-627)815914733 (DE-600)2806677-7 2199-4501 nnns volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 https://dx.doi.org/10.1007/s40843-023-2649-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 66 2023 12 24 11 4764-4772 |
allfields_unstemmed |
10.1007/s40843-023-2649-1 doi (DE-627)SPR054052599 (SPR)s40843-023-2649-1-e DE-627 ger DE-627 rakwb eng Li, Dong-Yang verfasserin aut Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 Tan, Qingwen aut Ren, Meng-Ping aut Wang, Wen-Qi aut Zhang, Bing-Lin aut Niu, Guangda aut Gong, Zhongliang aut Lei, Xiao-Wu aut Enthalten in Science China materials Beijing : Science China Press, 2014 66(2023), 12 vom: 24. Nov., Seite 4764-4772 (DE-627)815914733 (DE-600)2806677-7 2199-4501 nnns volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 https://dx.doi.org/10.1007/s40843-023-2649-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 66 2023 12 24 11 4764-4772 |
allfieldsGer |
10.1007/s40843-023-2649-1 doi (DE-627)SPR054052599 (SPR)s40843-023-2649-1-e DE-627 ger DE-627 rakwb eng Li, Dong-Yang verfasserin aut Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 Tan, Qingwen aut Ren, Meng-Ping aut Wang, Wen-Qi aut Zhang, Bing-Lin aut Niu, Guangda aut Gong, Zhongliang aut Lei, Xiao-Wu aut Enthalten in Science China materials Beijing : Science China Press, 2014 66(2023), 12 vom: 24. Nov., Seite 4764-4772 (DE-627)815914733 (DE-600)2806677-7 2199-4501 nnns volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 https://dx.doi.org/10.1007/s40843-023-2649-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 66 2023 12 24 11 4764-4772 |
allfieldsSound |
10.1007/s40843-023-2649-1 doi (DE-627)SPR054052599 (SPR)s40843-023-2649-1-e DE-627 ger DE-627 rakwb eng Li, Dong-Yang verfasserin aut Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 Tan, Qingwen aut Ren, Meng-Ping aut Wang, Wen-Qi aut Zhang, Bing-Lin aut Niu, Guangda aut Gong, Zhongliang aut Lei, Xiao-Wu aut Enthalten in Science China materials Beijing : Science China Press, 2014 66(2023), 12 vom: 24. Nov., Seite 4764-4772 (DE-627)815914733 (DE-600)2806677-7 2199-4501 nnns volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 https://dx.doi.org/10.1007/s40843-023-2649-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 66 2023 12 24 11 4764-4772 |
language |
English |
source |
Enthalten in Science China materials 66(2023), 12 vom: 24. Nov., Seite 4764-4772 volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 |
sourceStr |
Enthalten in Science China materials 66(2023), 12 vom: 24. Nov., Seite 4764-4772 volume:66 year:2023 number:12 day:24 month:11 pages:4764-4772 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
zero-dimension hybrid cuprous halides photo-luminescence radioluminescence X-ray imaging |
isfreeaccess_bool |
false |
container_title |
Science China materials |
authorswithroles_txt_mv |
Li, Dong-Yang @@aut@@ Tan, Qingwen @@aut@@ Ren, Meng-Ping @@aut@@ Wang, Wen-Qi @@aut@@ Zhang, Bing-Lin @@aut@@ Niu, Guangda @@aut@@ Gong, Zhongliang @@aut@@ Lei, Xiao-Wu @@aut@@ |
publishDateDaySort_date |
2023-11-24T00:00:00Z |
hierarchy_top_id |
815914733 |
id |
SPR054052599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054052599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231212064705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231212s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40843-023-2649-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054052599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40843-023-2649-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Dong-Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero-dimension hybrid cuprous halides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photo-luminescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radioluminescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Qingwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Meng-Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wen-Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bing-Lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Guangda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Zhongliang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Xiao-Wu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science China materials</subfield><subfield code="d">Beijing : Science China Press, 2014</subfield><subfield code="g">66(2023), 12 vom: 24. Nov., Seite 4764-4772</subfield><subfield code="w">(DE-627)815914733</subfield><subfield code="w">(DE-600)2806677-7</subfield><subfield code="x">2199-4501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4764-4772</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40843-023-2649-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2023</subfield><subfield code="e">12</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield><subfield code="h">4764-4772</subfield></datafield></record></collection>
|
author |
Li, Dong-Yang |
spellingShingle |
Li, Dong-Yang misc zero-dimension hybrid cuprous halides misc photo-luminescence misc radioluminescence misc X-ray imaging Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
authorStr |
Li, Dong-Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)815914733 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2199-4501 |
topic_title |
Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators zero-dimension hybrid cuprous halides (dpeaa)DE-He213 photo-luminescence (dpeaa)DE-He213 radioluminescence (dpeaa)DE-He213 X-ray imaging (dpeaa)DE-He213 |
topic |
misc zero-dimension hybrid cuprous halides misc photo-luminescence misc radioluminescence misc X-ray imaging |
topic_unstemmed |
misc zero-dimension hybrid cuprous halides misc photo-luminescence misc radioluminescence misc X-ray imaging |
topic_browse |
misc zero-dimension hybrid cuprous halides misc photo-luminescence misc radioluminescence misc X-ray imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science China materials |
hierarchy_parent_id |
815914733 |
hierarchy_top_title |
Science China materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)815914733 (DE-600)2806677-7 |
title |
Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
ctrlnum |
(DE-627)SPR054052599 (SPR)s40843-023-2649-1-e |
title_full |
Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
author_sort |
Li, Dong-Yang |
journal |
Science China materials |
journalStr |
Science China materials |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
4764 |
author_browse |
Li, Dong-Yang Tan, Qingwen Ren, Meng-Ping Wang, Wen-Qi Zhang, Bing-Lin Niu, Guangda Gong, Zhongliang Lei, Xiao-Wu |
container_volume |
66 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Dong-Yang |
doi_str_mv |
10.1007/s40843-023-2649-1 |
title_sort |
near-unity broadband luminescent cuprous halide nanoclusters as highly efficient x-ray scintillators |
title_auth |
Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
abstract |
Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. © Science China Press 2023 |
abstractGer |
Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. © Science China Press 2023 |
abstract_unstemmed |
Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators. © Science China Press 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators |
url |
https://dx.doi.org/10.1007/s40843-023-2649-1 |
remote_bool |
true |
author2 |
Tan, Qingwen Ren, Meng-Ping Wang, Wen-Qi Zhang, Bing-Lin Niu, Guangda Gong, Zhongliang Lei, Xiao-Wu |
author2Str |
Tan, Qingwen Ren, Meng-Ping Wang, Wen-Qi Zhang, Bing-Lin Niu, Guangda Gong, Zhongliang Lei, Xiao-Wu |
ppnlink |
815914733 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40843-023-2649-1 |
up_date |
2024-07-03T23:41:31.132Z |
_version_ |
1803603244360925184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054052599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231212064705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231212s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40843-023-2649-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054052599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40843-023-2649-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Dong-Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near-unity broadband luminescent cuprous halide nanoclusters as highly efficient X-ray scintillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract X-ray scintillators as functional energy materials possess the powerful ability to convert high-energy radiation into visible light with wide applications in various nuclear radiation fields. In this regard, three-dimensional (3D) lead perovskite nanocrystal-based X-ray scintillators have attracted extensive attention, but their low light yield and serious toxicity extremely restrict their further applications. To address these issues, a family of 0D hybrid cuprous halides of $ A_{2} %$ Cu_{4} %$ X_{6} $ (A = PTPP, TPA; X = Br, I) based on discrete [$ Cu_{4} %$ X_{6} $]2− nanoclusters were demonstrated as highly desirable lead-free scintillators. Upon excitation of both ultraviolet and blue light, these halide nanoclusters displayed that self-trapped excitons induced broadband light emissions from green to red with near-unity photoluminescent quantum yield (PLQY, 93.1%) andlarge Stokes shifts (>1.3 eV). Significantly, the high PLQY, negligible self-absorption, and strong X-ray attenuation from [$ Cu_{4} %$ X_{6} $]2− nanoclusters endowed them with extraordinary radioluminescence properties. The linear radioluminescence intensity response to a wide range of X-ray dose rates gave an acceptable detection limit of 0.7563 $ µGy_{air} $ $ s^{−1} $, which was lower than the required value for regular medical diagnostics (5.5 $ µGy_{air} $ $ s^{−1} $). X-ray imaging demonstrated an ultrahigh spatial resolution of 14.83 lp $ mm^{−1} $ and negligible afterglow (1.3 ms), showcasing potential applications in X-ray radiography. Overall, the combined superiorities of nontoxicity, high light yield, excellent stability, and good radiation hardness make cuprous halide nanoclusters excellent scintillators.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero-dimension hybrid cuprous halides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photo-luminescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radioluminescence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Qingwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Meng-Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wen-Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bing-Lin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Guangda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Zhongliang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lei, Xiao-Wu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science China materials</subfield><subfield code="d">Beijing : Science China Press, 2014</subfield><subfield code="g">66(2023), 12 vom: 24. Nov., Seite 4764-4772</subfield><subfield code="w">(DE-627)815914733</subfield><subfield code="w">(DE-600)2806677-7</subfield><subfield code="x">2199-4501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:12</subfield><subfield code="g">day:24</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4764-4772</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40843-023-2649-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2023</subfield><subfield code="e">12</subfield><subfield code="b">24</subfield><subfield code="c">11</subfield><subfield code="h">4764-4772</subfield></datafield></record></collection>
|
score |
7.399596 |