Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever
Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin...
Ausführliche Beschreibung
Autor*in: |
Varga, G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular and Cellular Pediatrics - Berlin : SpringerOpen, 2014, 10(2023), 1 vom: 13. Dez. |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2023 ; number:1 ; day:13 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s40348-023-00173-3 |
---|
Katalog-ID: |
SPR05406712X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05406712X | ||
003 | DE-627 | ||
005 | 20231213064652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231213s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40348-023-00173-3 |2 doi | |
035 | |a (DE-627)SPR05406712X | ||
035 | |a (SPR)s40348-023-00173-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Varga, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. | ||
650 | 4 | |a FMF |7 (dpeaa)DE-He213 | |
650 | 4 | |a Neutrophils |7 (dpeaa)DE-He213 | |
650 | 4 | |a ROS (reactive oxygen species) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gasdermin D (GSDMD) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Schleifenbaum, S. |4 aut | |
700 | 1 | |a Koenig, U. |4 aut | |
700 | 1 | |a Waldkirch, J. |4 aut | |
700 | 1 | |a Hinze, C. |4 aut | |
700 | 1 | |a Kessel, C. |4 aut | |
700 | 1 | |a Geluk, W. |4 aut | |
700 | 1 | |a Pap, T. |4 aut | |
700 | 1 | |a Lainka, Elke |4 aut | |
700 | 1 | |a Kallinich, Tilmann |4 aut | |
700 | 1 | |a Foell, D. |4 aut | |
700 | 1 | |a Wittkowski, H. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Molecular and Cellular Pediatrics |d Berlin : SpringerOpen, 2014 |g 10(2023), 1 vom: 13. Dez. |w (DE-627)797382186 |w (DE-600)2785551-X |x 2194-7791 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2023 |g number:1 |g day:13 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40348-023-00173-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2023 |e 1 |b 13 |c 12 |
author_variant |
g v gv s s ss u k uk j w jw c h ch c k ck w g wg t p tp e l el t k tk d f df h w hw |
---|---|
matchkey_str |
article:21947791:2023----::hgctceletlasonacdeesoponlmaoy101if |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s40348-023-00173-3 doi (DE-627)SPR05406712X (SPR)s40348-023-00173-3-e DE-627 ger DE-627 rakwb eng Varga, G. verfasserin aut Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 Schleifenbaum, S. aut Koenig, U. aut Waldkirch, J. aut Hinze, C. aut Kessel, C. aut Geluk, W. aut Pap, T. aut Lainka, Elke aut Kallinich, Tilmann aut Foell, D. aut Wittkowski, H. aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 10(2023), 1 vom: 13. Dez. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:10 year:2023 number:1 day:13 month:12 https://dx.doi.org/10.1186/s40348-023-00173-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 13 12 |
spelling |
10.1186/s40348-023-00173-3 doi (DE-627)SPR05406712X (SPR)s40348-023-00173-3-e DE-627 ger DE-627 rakwb eng Varga, G. verfasserin aut Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 Schleifenbaum, S. aut Koenig, U. aut Waldkirch, J. aut Hinze, C. aut Kessel, C. aut Geluk, W. aut Pap, T. aut Lainka, Elke aut Kallinich, Tilmann aut Foell, D. aut Wittkowski, H. aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 10(2023), 1 vom: 13. Dez. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:10 year:2023 number:1 day:13 month:12 https://dx.doi.org/10.1186/s40348-023-00173-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 13 12 |
allfields_unstemmed |
10.1186/s40348-023-00173-3 doi (DE-627)SPR05406712X (SPR)s40348-023-00173-3-e DE-627 ger DE-627 rakwb eng Varga, G. verfasserin aut Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 Schleifenbaum, S. aut Koenig, U. aut Waldkirch, J. aut Hinze, C. aut Kessel, C. aut Geluk, W. aut Pap, T. aut Lainka, Elke aut Kallinich, Tilmann aut Foell, D. aut Wittkowski, H. aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 10(2023), 1 vom: 13. Dez. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:10 year:2023 number:1 day:13 month:12 https://dx.doi.org/10.1186/s40348-023-00173-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 13 12 |
allfieldsGer |
10.1186/s40348-023-00173-3 doi (DE-627)SPR05406712X (SPR)s40348-023-00173-3-e DE-627 ger DE-627 rakwb eng Varga, G. verfasserin aut Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 Schleifenbaum, S. aut Koenig, U. aut Waldkirch, J. aut Hinze, C. aut Kessel, C. aut Geluk, W. aut Pap, T. aut Lainka, Elke aut Kallinich, Tilmann aut Foell, D. aut Wittkowski, H. aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 10(2023), 1 vom: 13. Dez. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:10 year:2023 number:1 day:13 month:12 https://dx.doi.org/10.1186/s40348-023-00173-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 13 12 |
allfieldsSound |
10.1186/s40348-023-00173-3 doi (DE-627)SPR05406712X (SPR)s40348-023-00173-3-e DE-627 ger DE-627 rakwb eng Varga, G. verfasserin aut Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 Schleifenbaum, S. aut Koenig, U. aut Waldkirch, J. aut Hinze, C. aut Kessel, C. aut Geluk, W. aut Pap, T. aut Lainka, Elke aut Kallinich, Tilmann aut Foell, D. aut Wittkowski, H. aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 10(2023), 1 vom: 13. Dez. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:10 year:2023 number:1 day:13 month:12 https://dx.doi.org/10.1186/s40348-023-00173-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2023 1 13 12 |
language |
English |
source |
Enthalten in Molecular and Cellular Pediatrics 10(2023), 1 vom: 13. Dez. volume:10 year:2023 number:1 day:13 month:12 |
sourceStr |
Enthalten in Molecular and Cellular Pediatrics 10(2023), 1 vom: 13. Dez. volume:10 year:2023 number:1 day:13 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
FMF Neutrophils ROS (reactive oxygen species) Gasdermin D (GSDMD) |
isfreeaccess_bool |
true |
container_title |
Molecular and Cellular Pediatrics |
authorswithroles_txt_mv |
Varga, G. @@aut@@ Schleifenbaum, S. @@aut@@ Koenig, U. @@aut@@ Waldkirch, J. @@aut@@ Hinze, C. @@aut@@ Kessel, C. @@aut@@ Geluk, W. @@aut@@ Pap, T. @@aut@@ Lainka, Elke @@aut@@ Kallinich, Tilmann @@aut@@ Foell, D. @@aut@@ Wittkowski, H. @@aut@@ |
publishDateDaySort_date |
2023-12-13T00:00:00Z |
hierarchy_top_id |
797382186 |
id |
SPR05406712X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05406712X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231213064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231213s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40348-023-00173-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05406712X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40348-023-00173-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varga, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FMF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutrophils</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROS (reactive oxygen species)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gasdermin D (GSDMD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schleifenbaum, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koenig, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waldkirch, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hinze, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kessel, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geluk, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pap, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lainka, Elke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kallinich, Tilmann</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foell, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wittkowski, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular and Cellular Pediatrics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">10(2023), 1 vom: 13. Dez.</subfield><subfield code="w">(DE-627)797382186</subfield><subfield code="w">(DE-600)2785551-X</subfield><subfield code="x">2194-7791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40348-023-00173-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Varga, G. |
spellingShingle |
Varga, G. misc FMF misc Neutrophils misc ROS (reactive oxygen species) misc Gasdermin D (GSDMD) Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
authorStr |
Varga, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)797382186 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2194-7791 |
topic_title |
Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever FMF (dpeaa)DE-He213 Neutrophils (dpeaa)DE-He213 ROS (reactive oxygen species) (dpeaa)DE-He213 Gasdermin D (GSDMD) (dpeaa)DE-He213 |
topic |
misc FMF misc Neutrophils misc ROS (reactive oxygen species) misc Gasdermin D (GSDMD) |
topic_unstemmed |
misc FMF misc Neutrophils misc ROS (reactive oxygen species) misc Gasdermin D (GSDMD) |
topic_browse |
misc FMF misc Neutrophils misc ROS (reactive oxygen species) misc Gasdermin D (GSDMD) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular and Cellular Pediatrics |
hierarchy_parent_id |
797382186 |
hierarchy_top_title |
Molecular and Cellular Pediatrics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)797382186 (DE-600)2785551-X |
title |
Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
ctrlnum |
(DE-627)SPR05406712X (SPR)s40348-023-00173-3-e |
title_full |
Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
author_sort |
Varga, G. |
journal |
Molecular and Cellular Pediatrics |
journalStr |
Molecular and Cellular Pediatrics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Varga, G. Schleifenbaum, S. Koenig, U. Waldkirch, J. Hinze, C. Kessel, C. Geluk, W. Pap, T. Lainka, Elke Kallinich, Tilmann Foell, D. Wittkowski, H. |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Varga, G. |
doi_str_mv |
10.1186/s40348-023-00173-3 |
title_sort |
phagocytic cell death leads to enhanced release of pro-inflammatory s100a12 in familial mediterranean fever |
title_auth |
Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
abstract |
Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. © The Author(s) 2023 |
abstractGer |
Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. © The Author(s) 2023 |
abstract_unstemmed |
Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever |
url |
https://dx.doi.org/10.1186/s40348-023-00173-3 |
remote_bool |
true |
author2 |
Schleifenbaum, S. Koenig, U. Waldkirch, J. Hinze, C. Kessel, C. Geluk, W. Pap, T. Lainka, Elke Kallinich, Tilmann Foell, D. Wittkowski, H. |
author2Str |
Schleifenbaum, S. Koenig, U. Waldkirch, J. Hinze, C. Kessel, C. Geluk, W. Pap, T. Lainka, Elke Kallinich, Tilmann Foell, D. Wittkowski, H. |
ppnlink |
797382186 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40348-023-00173-3 |
up_date |
2024-07-03T23:45:31.361Z |
_version_ |
1803603496258240512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05406712X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231213064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231213s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40348-023-00173-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05406712X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40348-023-00173-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varga, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phagocytic cell death leads to enhanced release of pro-inflammatory S100A12 in familial Mediterranean fever</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Familial Mediterranean fever (FMF) is a prototypical autoinflammatory syndrome associated with phagocytic cell activation. Pyrin mutations are the genetic basis of this disease, and its expression has been shown in monocytes, granulocytes, dendritic cells, and synovial fibroblasts. Pyrin functions as a cytosolic pattern recognition receptor and forms a distinct pyrin inflammasome. The phagocyte-specific protein S100A12 is predominantly expressed in granulocytes and belongs to the group of damage associated molecular patterns (DAMP). S100A12 can be detected at massively elevated levels in the serum of FMF patients, even in clinically inactive disease. Whether this is crucial for FMF pathogenesis is as yet unknown, and we therefore investigated the mechanisms of S100A12 release from granulocytes of FMF patients presenting clinically inactive. Results We demonstrate that FMF neutrophils from patients in clinical inactive disease possess an intrinsic activity leading to cell death even in exogenously unstimulated neutrophils. Cell death resembles NETosis and is dependent on ROS and pore forming protein gasdermin D (GSDMD), as inhibitors for both are capable of completely block cell death and S100A12 release. When pyrin-activator TcdA (Clostridium difficile toxin A) is used to stimulate, neutrophilic cell death and S100A12 release are significantly enhanced in neutrophils from FMF patients compared to neutrophils from HC. Conclusions We are able to demonstrate that activation threshold of neutrophils from inactive FMF patients is decreased, most likely by pre-activated pyrin. FMF neutrophils present with intrinsically higher ROS production, when cultured ex vivo. This higher baseline ROS activity leads to increased GSDMD cleavage and subsequent release of, e.g., S100A12, and to increased cell death with features of NETosis and pyroptosis. We show for the first time that cell death pathways in neutrophils of inactive FMF patients are easily triggered and lead to ROS- and GSDMD-dependent activation mechanisms and possibly pathology. This could be therapeutically addressed by blocking ROS or GSDMD cleavage to decrease inflammatory outbreaks when becoming highly active.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FMF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutrophils</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ROS (reactive oxygen species)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gasdermin D (GSDMD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schleifenbaum, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koenig, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waldkirch, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hinze, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kessel, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geluk, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pap, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lainka, Elke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kallinich, Tilmann</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foell, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wittkowski, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular and Cellular Pediatrics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">10(2023), 1 vom: 13. Dez.</subfield><subfield code="w">(DE-627)797382186</subfield><subfield code="w">(DE-600)2785551-X</subfield><subfield code="x">2194-7791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40348-023-00173-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.399474 |