Quantifying and reducing inequity in average treatment effect estimation
Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample represent...
Ausführliche Beschreibung
Autor*in: |
Nieser, Kenneth J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical research methodology - London : BioMed Central, 2001, 23(2023), 1 vom: 15. Dez. |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; day:15 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12874-023-02104-2 |
---|
Katalog-ID: |
SPR054104750 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054104750 | ||
003 | DE-627 | ||
005 | 20231216064633.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231216s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12874-023-02104-2 |2 doi | |
035 | |a (DE-627)SPR054104750 | ||
035 | |a (SPR)s12874-023-02104-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Nieser, Kenneth J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantifying and reducing inequity in average treatment effect estimation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. | ||
650 | 4 | |a Average treatment effect |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sample representativeness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Subgroup analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cochran, Amy L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical research methodology |d London : BioMed Central, 2001 |g 23(2023), 1 vom: 15. Dez. |w (DE-627)326643818 |w (DE-600)2041362-2 |x 1471-2288 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g day:15 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12874-023-02104-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |b 15 |c 12 |
author_variant |
k j n kj kjn a l c al alc |
---|---|
matchkey_str |
article:14712288:2023----::uniynadeuignqiynvrgtetet |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12874-023-02104-2 doi (DE-627)SPR054104750 (SPR)s12874-023-02104-2-e DE-627 ger DE-627 rakwb eng Nieser, Kenneth J. verfasserin aut Quantifying and reducing inequity in average treatment effect estimation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 Cochran, Amy L. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 15. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:15 month:12 https://dx.doi.org/10.1186/s12874-023-02104-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 15 12 |
spelling |
10.1186/s12874-023-02104-2 doi (DE-627)SPR054104750 (SPR)s12874-023-02104-2-e DE-627 ger DE-627 rakwb eng Nieser, Kenneth J. verfasserin aut Quantifying and reducing inequity in average treatment effect estimation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 Cochran, Amy L. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 15. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:15 month:12 https://dx.doi.org/10.1186/s12874-023-02104-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 15 12 |
allfields_unstemmed |
10.1186/s12874-023-02104-2 doi (DE-627)SPR054104750 (SPR)s12874-023-02104-2-e DE-627 ger DE-627 rakwb eng Nieser, Kenneth J. verfasserin aut Quantifying and reducing inequity in average treatment effect estimation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 Cochran, Amy L. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 15. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:15 month:12 https://dx.doi.org/10.1186/s12874-023-02104-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 15 12 |
allfieldsGer |
10.1186/s12874-023-02104-2 doi (DE-627)SPR054104750 (SPR)s12874-023-02104-2-e DE-627 ger DE-627 rakwb eng Nieser, Kenneth J. verfasserin aut Quantifying and reducing inequity in average treatment effect estimation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 Cochran, Amy L. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 15. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:15 month:12 https://dx.doi.org/10.1186/s12874-023-02104-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 15 12 |
allfieldsSound |
10.1186/s12874-023-02104-2 doi (DE-627)SPR054104750 (SPR)s12874-023-02104-2-e DE-627 ger DE-627 rakwb eng Nieser, Kenneth J. verfasserin aut Quantifying and reducing inequity in average treatment effect estimation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 Cochran, Amy L. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 23(2023), 1 vom: 15. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:23 year:2023 number:1 day:15 month:12 https://dx.doi.org/10.1186/s12874-023-02104-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 15 12 |
language |
English |
source |
Enthalten in BMC medical research methodology 23(2023), 1 vom: 15. Dez. volume:23 year:2023 number:1 day:15 month:12 |
sourceStr |
Enthalten in BMC medical research methodology 23(2023), 1 vom: 15. Dez. volume:23 year:2023 number:1 day:15 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Average treatment effect Sample representativeness Subgroup analysis |
isfreeaccess_bool |
true |
container_title |
BMC medical research methodology |
authorswithroles_txt_mv |
Nieser, Kenneth J. @@aut@@ Cochran, Amy L. @@aut@@ |
publishDateDaySort_date |
2023-12-15T00:00:00Z |
hierarchy_top_id |
326643818 |
id |
SPR054104750 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054104750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231216064633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-023-02104-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054104750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-023-02104-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nieser, Kenneth J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantifying and reducing inequity in average treatment effect estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average treatment effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sample representativeness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cochran, Amy L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 15. Dez.</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-023-02104-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Nieser, Kenneth J. |
spellingShingle |
Nieser, Kenneth J. misc Average treatment effect misc Sample representativeness misc Subgroup analysis Quantifying and reducing inequity in average treatment effect estimation |
authorStr |
Nieser, Kenneth J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643818 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2288 |
topic_title |
Quantifying and reducing inequity in average treatment effect estimation Average treatment effect (dpeaa)DE-He213 Sample representativeness (dpeaa)DE-He213 Subgroup analysis (dpeaa)DE-He213 |
topic |
misc Average treatment effect misc Sample representativeness misc Subgroup analysis |
topic_unstemmed |
misc Average treatment effect misc Sample representativeness misc Subgroup analysis |
topic_browse |
misc Average treatment effect misc Sample representativeness misc Subgroup analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical research methodology |
hierarchy_parent_id |
326643818 |
hierarchy_top_title |
BMC medical research methodology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643818 (DE-600)2041362-2 |
title |
Quantifying and reducing inequity in average treatment effect estimation |
ctrlnum |
(DE-627)SPR054104750 (SPR)s12874-023-02104-2-e |
title_full |
Quantifying and reducing inequity in average treatment effect estimation |
author_sort |
Nieser, Kenneth J. |
journal |
BMC medical research methodology |
journalStr |
BMC medical research methodology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Nieser, Kenneth J. Cochran, Amy L. |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Nieser, Kenneth J. |
doi_str_mv |
10.1186/s12874-023-02104-2 |
title_sort |
quantifying and reducing inequity in average treatment effect estimation |
title_auth |
Quantifying and reducing inequity in average treatment effect estimation |
abstract |
Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. © The Author(s) 2023 |
abstractGer |
Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. © The Author(s) 2023 |
abstract_unstemmed |
Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Quantifying and reducing inequity in average treatment effect estimation |
url |
https://dx.doi.org/10.1186/s12874-023-02104-2 |
remote_bool |
true |
author2 |
Cochran, Amy L. |
author2Str |
Cochran, Amy L. |
ppnlink |
326643818 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12874-023-02104-2 |
up_date |
2024-07-03T23:57:18.745Z |
_version_ |
1803604238005174272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054104750</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231216064633.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-023-02104-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054104750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-023-02104-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nieser, Kenneth J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantifying and reducing inequity in average treatment effect estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Across studies of average treatment effects, some population subgroups consistently have lower representation than others which can lead to discrepancies in how well results generalize. Methods We develop a framework for quantifying inequity due to systemic disparities in sample representation and a method for mitigation during data analysis. Assuming subgroup treatment effects are exchangeable, an unbiased sample average treatment effect estimator will have lower mean-squared error, on average across studies, for subgroups with less representation when treatment effects vary. We present a method for estimating average treatment effects in representation-adjusted samples which enables subgroups to optimally leverage information from the full sample rather than only their own subgroup’s data. Two approaches for specifying representation adjustment are offered—one minimizes average mean-squared error for each subgroup separately and the other balances minimization of mean-squared error and equal representation. We conduct simulation studies to compare the performance of the proposed estimators to several subgroup-specific estimators. Results We find that the proposed estimators generally provide lower mean squared error, particularly for smaller subgroups, relative to the other estimators. As a case study, we apply this method to a subgroup analysis from a published study. Conclusions We recommend the use of the proposed estimators to mitigate the impact of disparities in representation, though structural change is ultimately needed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average treatment effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sample representativeness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cochran, Amy L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 15. Dez.</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-023-02104-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.399583 |