Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks
Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find signif...
Ausführliche Beschreibung
Autor*in: |
Wemmer, F. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Computing and software for big science - Cham, Switzerland : Springer International Publishing, 2017, 7(2023), 1 vom: Dez. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2023 ; number:1 ; month:12 |
Links: |
---|
DOI / URN: |
10.1007/s41781-023-00105-w |
---|
Katalog-ID: |
SPR05410727X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR05410727X | ||
003 | DE-627 | ||
005 | 20240827161816.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231216s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s41781-023-00105-w |2 doi | |
035 | |a (DE-627)SPR05410727X | ||
035 | |a (SPR)s41781-023-00105-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wemmer, F. |e verfasserin |0 (orcid)0000-0002-6475-0834 |4 aut | |
245 | 1 | 0 | |a Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. | ||
650 | 4 | |a Calorimeter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photon reconstruction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Overlapping clusters |7 (dpeaa)DE-He213 | |
650 | 4 | |a High background |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy clustering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Machine learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Graph neural networks |7 (dpeaa)DE-He213 | |
650 | 4 | |a End-to-end representation spaces |7 (dpeaa)DE-He213 | |
700 | 1 | |a Haide, I. |0 (orcid)0000-0003-0962-6344 |4 aut | |
700 | 1 | |a Eppelt, J. |0 (orcid)0000-0001-8368-3721 |4 aut | |
700 | 1 | |a Ferber, T. |0 (orcid)0000-0002-6849-0427 |4 aut | |
700 | 1 | |a Beaubien, A. |0 (orcid)0000-0001-9438-089X |4 aut | |
700 | 1 | |a Branchini, P. |0 (orcid)0000-0002-2270-9673 |4 aut | |
700 | 1 | |a Campajola, M. |0 (orcid)0000-0003-2518-7134 |4 aut | |
700 | 1 | |a Cecchi, C. |0 (orcid)0000-0002-2192-8233 |4 aut | |
700 | 1 | |a Cheema, P. |0 (orcid)0000-0001-8472-5727 |4 aut | |
700 | 1 | |a De Nardo, G. |0 (orcid)0000-0002-2047-9675 |4 aut | |
700 | 1 | |a Hearty, C. |0 (orcid)0000-0001-6568-0252 |4 aut | |
700 | 1 | |a Kuzmin, A. |0 (orcid)0000-0002-7011-5044 |4 aut | |
700 | 1 | |a Longo, S. |0 (orcid)0000-0002-8124-8969 |4 aut | |
700 | 1 | |a Manoni, E. |0 (orcid)0000-0002-9826-7947 |4 aut | |
700 | 1 | |a Meier, F. |0 (orcid)0000-0002-6088-0412 |4 aut | |
700 | 1 | |a Merola, M. |0 (orcid)0000-0002-7082-8108 |4 aut | |
700 | 1 | |a Miyabayashi, K. |0 (orcid)0000-0003-4352-734X |4 aut | |
700 | 1 | |a Moneta, S. |0 (orcid)0000-0003-2184-7510 |4 aut | |
700 | 1 | |a Remnev, M. |0 (orcid)0000-0001-6975-1724 |4 aut | |
700 | 1 | |a Roney, J. M. |0 (orcid)0000-0001-7802-4617 |4 aut | |
700 | 1 | |a Shiu, J.-G. |0 (orcid)0000-0002-8478-5639 |4 aut | |
700 | 1 | |a Shwartz, B. |0 (orcid)0000-0002-1456-1496 |4 aut | |
700 | 1 | |a Unno, Y. |0 (orcid)0000-0003-3355-765X |4 aut | |
700 | 1 | |a van Tonder, R. |0 (orcid)0000-0002-7448-4816 |4 aut | |
700 | 1 | |a Volpe, R. |0 (orcid)0000-0003-1782-2978 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computing and software for big science |d Cham, Switzerland : Springer International Publishing, 2017 |g 7(2023), 1 vom: Dez. |w (DE-627)1000743217 |w (DE-600)2908677-2 |x 2510-2044 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2023 |g number:1 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s41781-023-00105-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2023 |e 1 |c 12 |
author_variant |
f w fw i h ih j e je t f tf a b ab p b pb m c mc c c cc p c pc n g d ng ngd c h ch a k ak s l sl e m em f m fm m m mm k m km s m sm m r mr j m r jm jmr j g s jgs b s bs y u yu t r v tr trv r v rv |
---|---|
matchkey_str |
article:25102044:2023----::htneosrcinnhbleiaoieeuig |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s41781-023-00105-w doi (DE-627)SPR05410727X (SPR)s41781-023-00105-w-e DE-627 ger DE-627 rakwb eng Wemmer, F. verfasserin (orcid)0000-0002-6475-0834 aut Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 Haide, I. (orcid)0000-0003-0962-6344 aut Eppelt, J. (orcid)0000-0001-8368-3721 aut Ferber, T. (orcid)0000-0002-6849-0427 aut Beaubien, A. (orcid)0000-0001-9438-089X aut Branchini, P. (orcid)0000-0002-2270-9673 aut Campajola, M. (orcid)0000-0003-2518-7134 aut Cecchi, C. (orcid)0000-0002-2192-8233 aut Cheema, P. (orcid)0000-0001-8472-5727 aut De Nardo, G. (orcid)0000-0002-2047-9675 aut Hearty, C. (orcid)0000-0001-6568-0252 aut Kuzmin, A. (orcid)0000-0002-7011-5044 aut Longo, S. (orcid)0000-0002-8124-8969 aut Manoni, E. (orcid)0000-0002-9826-7947 aut Meier, F. (orcid)0000-0002-6088-0412 aut Merola, M. (orcid)0000-0002-7082-8108 aut Miyabayashi, K. (orcid)0000-0003-4352-734X aut Moneta, S. (orcid)0000-0003-2184-7510 aut Remnev, M. (orcid)0000-0001-6975-1724 aut Roney, J. M. (orcid)0000-0001-7802-4617 aut Shiu, J.-G. (orcid)0000-0002-8478-5639 aut Shwartz, B. (orcid)0000-0002-1456-1496 aut Unno, Y. (orcid)0000-0003-3355-765X aut van Tonder, R. (orcid)0000-0002-7448-4816 aut Volpe, R. (orcid)0000-0003-1782-2978 aut Enthalten in Computing and software for big science Cham, Switzerland : Springer International Publishing, 2017 7(2023), 1 vom: Dez. (DE-627)1000743217 (DE-600)2908677-2 2510-2044 nnns volume:7 year:2023 number:1 month:12 https://dx.doi.org/10.1007/s41781-023-00105-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 1 12 |
spelling |
10.1007/s41781-023-00105-w doi (DE-627)SPR05410727X (SPR)s41781-023-00105-w-e DE-627 ger DE-627 rakwb eng Wemmer, F. verfasserin (orcid)0000-0002-6475-0834 aut Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 Haide, I. (orcid)0000-0003-0962-6344 aut Eppelt, J. (orcid)0000-0001-8368-3721 aut Ferber, T. (orcid)0000-0002-6849-0427 aut Beaubien, A. (orcid)0000-0001-9438-089X aut Branchini, P. (orcid)0000-0002-2270-9673 aut Campajola, M. (orcid)0000-0003-2518-7134 aut Cecchi, C. (orcid)0000-0002-2192-8233 aut Cheema, P. (orcid)0000-0001-8472-5727 aut De Nardo, G. (orcid)0000-0002-2047-9675 aut Hearty, C. (orcid)0000-0001-6568-0252 aut Kuzmin, A. (orcid)0000-0002-7011-5044 aut Longo, S. (orcid)0000-0002-8124-8969 aut Manoni, E. (orcid)0000-0002-9826-7947 aut Meier, F. (orcid)0000-0002-6088-0412 aut Merola, M. (orcid)0000-0002-7082-8108 aut Miyabayashi, K. (orcid)0000-0003-4352-734X aut Moneta, S. (orcid)0000-0003-2184-7510 aut Remnev, M. (orcid)0000-0001-6975-1724 aut Roney, J. M. (orcid)0000-0001-7802-4617 aut Shiu, J.-G. (orcid)0000-0002-8478-5639 aut Shwartz, B. (orcid)0000-0002-1456-1496 aut Unno, Y. (orcid)0000-0003-3355-765X aut van Tonder, R. (orcid)0000-0002-7448-4816 aut Volpe, R. (orcid)0000-0003-1782-2978 aut Enthalten in Computing and software for big science Cham, Switzerland : Springer International Publishing, 2017 7(2023), 1 vom: Dez. (DE-627)1000743217 (DE-600)2908677-2 2510-2044 nnns volume:7 year:2023 number:1 month:12 https://dx.doi.org/10.1007/s41781-023-00105-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 1 12 |
allfields_unstemmed |
10.1007/s41781-023-00105-w doi (DE-627)SPR05410727X (SPR)s41781-023-00105-w-e DE-627 ger DE-627 rakwb eng Wemmer, F. verfasserin (orcid)0000-0002-6475-0834 aut Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 Haide, I. (orcid)0000-0003-0962-6344 aut Eppelt, J. (orcid)0000-0001-8368-3721 aut Ferber, T. (orcid)0000-0002-6849-0427 aut Beaubien, A. (orcid)0000-0001-9438-089X aut Branchini, P. (orcid)0000-0002-2270-9673 aut Campajola, M. (orcid)0000-0003-2518-7134 aut Cecchi, C. (orcid)0000-0002-2192-8233 aut Cheema, P. (orcid)0000-0001-8472-5727 aut De Nardo, G. (orcid)0000-0002-2047-9675 aut Hearty, C. (orcid)0000-0001-6568-0252 aut Kuzmin, A. (orcid)0000-0002-7011-5044 aut Longo, S. (orcid)0000-0002-8124-8969 aut Manoni, E. (orcid)0000-0002-9826-7947 aut Meier, F. (orcid)0000-0002-6088-0412 aut Merola, M. (orcid)0000-0002-7082-8108 aut Miyabayashi, K. (orcid)0000-0003-4352-734X aut Moneta, S. (orcid)0000-0003-2184-7510 aut Remnev, M. (orcid)0000-0001-6975-1724 aut Roney, J. M. (orcid)0000-0001-7802-4617 aut Shiu, J.-G. (orcid)0000-0002-8478-5639 aut Shwartz, B. (orcid)0000-0002-1456-1496 aut Unno, Y. (orcid)0000-0003-3355-765X aut van Tonder, R. (orcid)0000-0002-7448-4816 aut Volpe, R. (orcid)0000-0003-1782-2978 aut Enthalten in Computing and software for big science Cham, Switzerland : Springer International Publishing, 2017 7(2023), 1 vom: Dez. (DE-627)1000743217 (DE-600)2908677-2 2510-2044 nnns volume:7 year:2023 number:1 month:12 https://dx.doi.org/10.1007/s41781-023-00105-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 1 12 |
allfieldsGer |
10.1007/s41781-023-00105-w doi (DE-627)SPR05410727X (SPR)s41781-023-00105-w-e DE-627 ger DE-627 rakwb eng Wemmer, F. verfasserin (orcid)0000-0002-6475-0834 aut Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 Haide, I. (orcid)0000-0003-0962-6344 aut Eppelt, J. (orcid)0000-0001-8368-3721 aut Ferber, T. (orcid)0000-0002-6849-0427 aut Beaubien, A. (orcid)0000-0001-9438-089X aut Branchini, P. (orcid)0000-0002-2270-9673 aut Campajola, M. (orcid)0000-0003-2518-7134 aut Cecchi, C. (orcid)0000-0002-2192-8233 aut Cheema, P. (orcid)0000-0001-8472-5727 aut De Nardo, G. (orcid)0000-0002-2047-9675 aut Hearty, C. (orcid)0000-0001-6568-0252 aut Kuzmin, A. (orcid)0000-0002-7011-5044 aut Longo, S. (orcid)0000-0002-8124-8969 aut Manoni, E. (orcid)0000-0002-9826-7947 aut Meier, F. (orcid)0000-0002-6088-0412 aut Merola, M. (orcid)0000-0002-7082-8108 aut Miyabayashi, K. (orcid)0000-0003-4352-734X aut Moneta, S. (orcid)0000-0003-2184-7510 aut Remnev, M. (orcid)0000-0001-6975-1724 aut Roney, J. M. (orcid)0000-0001-7802-4617 aut Shiu, J.-G. (orcid)0000-0002-8478-5639 aut Shwartz, B. (orcid)0000-0002-1456-1496 aut Unno, Y. (orcid)0000-0003-3355-765X aut van Tonder, R. (orcid)0000-0002-7448-4816 aut Volpe, R. (orcid)0000-0003-1782-2978 aut Enthalten in Computing and software for big science Cham, Switzerland : Springer International Publishing, 2017 7(2023), 1 vom: Dez. (DE-627)1000743217 (DE-600)2908677-2 2510-2044 nnns volume:7 year:2023 number:1 month:12 https://dx.doi.org/10.1007/s41781-023-00105-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 1 12 |
allfieldsSound |
10.1007/s41781-023-00105-w doi (DE-627)SPR05410727X (SPR)s41781-023-00105-w-e DE-627 ger DE-627 rakwb eng Wemmer, F. verfasserin (orcid)0000-0002-6475-0834 aut Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 Haide, I. (orcid)0000-0003-0962-6344 aut Eppelt, J. (orcid)0000-0001-8368-3721 aut Ferber, T. (orcid)0000-0002-6849-0427 aut Beaubien, A. (orcid)0000-0001-9438-089X aut Branchini, P. (orcid)0000-0002-2270-9673 aut Campajola, M. (orcid)0000-0003-2518-7134 aut Cecchi, C. (orcid)0000-0002-2192-8233 aut Cheema, P. (orcid)0000-0001-8472-5727 aut De Nardo, G. (orcid)0000-0002-2047-9675 aut Hearty, C. (orcid)0000-0001-6568-0252 aut Kuzmin, A. (orcid)0000-0002-7011-5044 aut Longo, S. (orcid)0000-0002-8124-8969 aut Manoni, E. (orcid)0000-0002-9826-7947 aut Meier, F. (orcid)0000-0002-6088-0412 aut Merola, M. (orcid)0000-0002-7082-8108 aut Miyabayashi, K. (orcid)0000-0003-4352-734X aut Moneta, S. (orcid)0000-0003-2184-7510 aut Remnev, M. (orcid)0000-0001-6975-1724 aut Roney, J. M. (orcid)0000-0001-7802-4617 aut Shiu, J.-G. (orcid)0000-0002-8478-5639 aut Shwartz, B. (orcid)0000-0002-1456-1496 aut Unno, Y. (orcid)0000-0003-3355-765X aut van Tonder, R. (orcid)0000-0002-7448-4816 aut Volpe, R. (orcid)0000-0003-1782-2978 aut Enthalten in Computing and software for big science Cham, Switzerland : Springer International Publishing, 2017 7(2023), 1 vom: Dez. (DE-627)1000743217 (DE-600)2908677-2 2510-2044 nnns volume:7 year:2023 number:1 month:12 https://dx.doi.org/10.1007/s41781-023-00105-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2023 1 12 |
language |
English |
source |
Enthalten in Computing and software for big science 7(2023), 1 vom: Dez. volume:7 year:2023 number:1 month:12 |
sourceStr |
Enthalten in Computing and software for big science 7(2023), 1 vom: Dez. volume:7 year:2023 number:1 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Calorimeter Photon reconstruction Overlapping clusters High background Fuzzy clustering Machine learning Deep learning Graph neural networks End-to-end representation spaces |
isfreeaccess_bool |
true |
container_title |
Computing and software for big science |
authorswithroles_txt_mv |
Wemmer, F. @@aut@@ Haide, I. @@aut@@ Eppelt, J. @@aut@@ Ferber, T. @@aut@@ Beaubien, A. @@aut@@ Branchini, P. @@aut@@ Campajola, M. @@aut@@ Cecchi, C. @@aut@@ Cheema, P. @@aut@@ De Nardo, G. @@aut@@ Hearty, C. @@aut@@ Kuzmin, A. @@aut@@ Longo, S. @@aut@@ Manoni, E. @@aut@@ Meier, F. @@aut@@ Merola, M. @@aut@@ Miyabayashi, K. @@aut@@ Moneta, S. @@aut@@ Remnev, M. @@aut@@ Roney, J. M. @@aut@@ Shiu, J.-G. @@aut@@ Shwartz, B. @@aut@@ Unno, Y. @@aut@@ van Tonder, R. @@aut@@ Volpe, R. @@aut@@ |
publishDateDaySort_date |
2023-12-01T00:00:00Z |
hierarchy_top_id |
1000743217 |
id |
SPR05410727X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR05410727X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827161816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41781-023-00105-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05410727X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41781-023-00105-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wemmer, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6475-0834</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calorimeter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photon reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overlapping clusters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High background</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy clustering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph neural networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">End-to-end representation spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haide, I.</subfield><subfield code="0">(orcid)0000-0003-0962-6344</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eppelt, J.</subfield><subfield code="0">(orcid)0000-0001-8368-3721</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferber, T.</subfield><subfield code="0">(orcid)0000-0002-6849-0427</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beaubien, A.</subfield><subfield code="0">(orcid)0000-0001-9438-089X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Branchini, P.</subfield><subfield code="0">(orcid)0000-0002-2270-9673</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campajola, M.</subfield><subfield code="0">(orcid)0000-0003-2518-7134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, C.</subfield><subfield code="0">(orcid)0000-0002-2192-8233</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, P.</subfield><subfield code="0">(orcid)0000-0001-8472-5727</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Nardo, G.</subfield><subfield code="0">(orcid)0000-0002-2047-9675</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hearty, C.</subfield><subfield code="0">(orcid)0000-0001-6568-0252</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, A.</subfield><subfield code="0">(orcid)0000-0002-7011-5044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Longo, S.</subfield><subfield code="0">(orcid)0000-0002-8124-8969</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manoni, E.</subfield><subfield code="0">(orcid)0000-0002-9826-7947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meier, F.</subfield><subfield code="0">(orcid)0000-0002-6088-0412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merola, M.</subfield><subfield code="0">(orcid)0000-0002-7082-8108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyabayashi, K.</subfield><subfield code="0">(orcid)0000-0003-4352-734X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moneta, S.</subfield><subfield code="0">(orcid)0000-0003-2184-7510</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remnev, M.</subfield><subfield code="0">(orcid)0000-0001-6975-1724</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roney, J. M.</subfield><subfield code="0">(orcid)0000-0001-7802-4617</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shiu, J.-G.</subfield><subfield code="0">(orcid)0000-0002-8478-5639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shwartz, B.</subfield><subfield code="0">(orcid)0000-0002-1456-1496</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unno, Y.</subfield><subfield code="0">(orcid)0000-0003-3355-765X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Tonder, R.</subfield><subfield code="0">(orcid)0000-0002-7448-4816</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volpe, R.</subfield><subfield code="0">(orcid)0000-0003-1782-2978</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computing and software for big science</subfield><subfield code="d">Cham, Switzerland : Springer International Publishing, 2017</subfield><subfield code="g">7(2023), 1 vom: Dez.</subfield><subfield code="w">(DE-627)1000743217</subfield><subfield code="w">(DE-600)2908677-2</subfield><subfield code="x">2510-2044</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41781-023-00105-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Wemmer, F. |
spellingShingle |
Wemmer, F. misc Calorimeter misc Photon reconstruction misc Overlapping clusters misc High background misc Fuzzy clustering misc Machine learning misc Deep learning misc Graph neural networks misc End-to-end representation spaces Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
authorStr |
Wemmer, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1000743217 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2510-2044 |
topic_title |
Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks Calorimeter (dpeaa)DE-He213 Photon reconstruction (dpeaa)DE-He213 Overlapping clusters (dpeaa)DE-He213 High background (dpeaa)DE-He213 Fuzzy clustering (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Graph neural networks (dpeaa)DE-He213 End-to-end representation spaces (dpeaa)DE-He213 |
topic |
misc Calorimeter misc Photon reconstruction misc Overlapping clusters misc High background misc Fuzzy clustering misc Machine learning misc Deep learning misc Graph neural networks misc End-to-end representation spaces |
topic_unstemmed |
misc Calorimeter misc Photon reconstruction misc Overlapping clusters misc High background misc Fuzzy clustering misc Machine learning misc Deep learning misc Graph neural networks misc End-to-end representation spaces |
topic_browse |
misc Calorimeter misc Photon reconstruction misc Overlapping clusters misc High background misc Fuzzy clustering misc Machine learning misc Deep learning misc Graph neural networks misc End-to-end representation spaces |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computing and software for big science |
hierarchy_parent_id |
1000743217 |
hierarchy_top_title |
Computing and software for big science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1000743217 (DE-600)2908677-2 |
title |
Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
ctrlnum |
(DE-627)SPR05410727X (SPR)s41781-023-00105-w-e |
title_full |
Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
author_sort |
Wemmer, F. |
journal |
Computing and software for big science |
journalStr |
Computing and software for big science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Wemmer, F. Haide, I. Eppelt, J. Ferber, T. Beaubien, A. Branchini, P. Campajola, M. Cecchi, C. Cheema, P. De Nardo, G. Hearty, C. Kuzmin, A. Longo, S. Manoni, E. Meier, F. Merola, M. Miyabayashi, K. Moneta, S. Remnev, M. Roney, J. M. Shiu, J.-G. Shwartz, B. Unno, Y. van Tonder, R. Volpe, R. |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Wemmer, F. |
doi_str_mv |
10.1007/s41781-023-00105-w |
normlink |
(ORCID)0000-0002-6475-0834 (ORCID)0000-0003-0962-6344 (ORCID)0000-0001-8368-3721 (ORCID)0000-0002-6849-0427 (ORCID)0000-0001-9438-089X (ORCID)0000-0002-2270-9673 (ORCID)0000-0003-2518-7134 (ORCID)0000-0002-2192-8233 (ORCID)0000-0001-8472-5727 (ORCID)0000-0002-2047-9675 (ORCID)0000-0001-6568-0252 (ORCID)0000-0002-7011-5044 (ORCID)0000-0002-8124-8969 (ORCID)0000-0002-9826-7947 (ORCID)0000-0002-6088-0412 (ORCID)0000-0002-7082-8108 (ORCID)0000-0003-4352-734X (ORCID)0000-0003-2184-7510 (ORCID)0000-0001-6975-1724 (ORCID)0000-0001-7802-4617 (ORCID)0000-0002-8478-5639 (ORCID)0000-0002-1456-1496 (ORCID)0000-0003-3355-765X (ORCID)0000-0002-7448-4816 (ORCID)0000-0003-1782-2978 |
normlink_prefix_str_mv |
(orcid)0000-0002-6475-0834 (orcid)0000-0003-0962-6344 (orcid)0000-0001-8368-3721 (orcid)0000-0002-6849-0427 (orcid)0000-0001-9438-089X (orcid)0000-0002-2270-9673 (orcid)0000-0003-2518-7134 (orcid)0000-0002-2192-8233 (orcid)0000-0001-8472-5727 (orcid)0000-0002-2047-9675 (orcid)0000-0001-6568-0252 (orcid)0000-0002-7011-5044 (orcid)0000-0002-8124-8969 (orcid)0000-0002-9826-7947 (orcid)0000-0002-6088-0412 (orcid)0000-0002-7082-8108 (orcid)0000-0003-4352-734X (orcid)0000-0003-2184-7510 (orcid)0000-0001-6975-1724 (orcid)0000-0001-7802-4617 (orcid)0000-0002-8478-5639 (orcid)0000-0002-1456-1496 (orcid)0000-0003-3355-765X (orcid)0000-0002-7448-4816 (orcid)0000-0003-1782-2978 |
title_sort |
photon reconstruction in the belle ii calorimeter using graph neural networks |
title_auth |
Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
abstract |
Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. © The Author(s) 2023 |
abstractGer |
Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. © The Author(s) 2023 |
abstract_unstemmed |
Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks |
url |
https://dx.doi.org/10.1007/s41781-023-00105-w |
remote_bool |
true |
author2 |
Haide, I. Eppelt, J. Ferber, T. Beaubien, A. Branchini, P. Campajola, M. Cecchi, C. Cheema, P. De Nardo, G. Hearty, C. Kuzmin, A. Longo, S. Manoni, E. Meier, F. Merola, M. Miyabayashi, K. Moneta, S. Remnev, M. Roney, J. M. Shiu, J.-G. Shwartz, B. Unno, Y. van Tonder, R. Volpe, R. |
author2Str |
Haide, I. Eppelt, J. Ferber, T. Beaubien, A. Branchini, P. Campajola, M. Cecchi, C. Cheema, P. De Nardo, G. Hearty, C. Kuzmin, A. Longo, S. Manoni, E. Meier, F. Merola, M. Miyabayashi, K. Moneta, S. Remnev, M. Roney, J. M. Shiu, J.-G. Shwartz, B. Unno, Y. van Tonder, R. Volpe, R. |
ppnlink |
1000743217 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s41781-023-00105-w |
up_date |
2024-08-28T05:54:07.557Z |
_version_ |
1808609519923625984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR05410727X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827161816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231216s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41781-023-00105-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05410727X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41781-023-00105-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wemmer, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6475-0834</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find significant improvements of the energy resolution compared to the currently used reconstruction algorithm for both isolated and overlapping photons of more than 30% for photons with energies %$E_{\gamma }<0.5\,\mathrm {\,Ge\hspace{-1.00006pt}V}%$ and high levels of beam backgrounds. Overall, the GNN reconstruction improves the resolution and reduces the tails of the reconstructed energy distribution and therefore is a promising option for the upcoming high luminosity running of Belle II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calorimeter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photon reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Overlapping clusters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High background</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy clustering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph neural networks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">End-to-end representation spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haide, I.</subfield><subfield code="0">(orcid)0000-0003-0962-6344</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eppelt, J.</subfield><subfield code="0">(orcid)0000-0001-8368-3721</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferber, T.</subfield><subfield code="0">(orcid)0000-0002-6849-0427</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beaubien, A.</subfield><subfield code="0">(orcid)0000-0001-9438-089X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Branchini, P.</subfield><subfield code="0">(orcid)0000-0002-2270-9673</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campajola, M.</subfield><subfield code="0">(orcid)0000-0003-2518-7134</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, C.</subfield><subfield code="0">(orcid)0000-0002-2192-8233</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, P.</subfield><subfield code="0">(orcid)0000-0001-8472-5727</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Nardo, G.</subfield><subfield code="0">(orcid)0000-0002-2047-9675</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hearty, C.</subfield><subfield code="0">(orcid)0000-0001-6568-0252</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, A.</subfield><subfield code="0">(orcid)0000-0002-7011-5044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Longo, S.</subfield><subfield code="0">(orcid)0000-0002-8124-8969</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manoni, E.</subfield><subfield code="0">(orcid)0000-0002-9826-7947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meier, F.</subfield><subfield code="0">(orcid)0000-0002-6088-0412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merola, M.</subfield><subfield code="0">(orcid)0000-0002-7082-8108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyabayashi, K.</subfield><subfield code="0">(orcid)0000-0003-4352-734X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moneta, S.</subfield><subfield code="0">(orcid)0000-0003-2184-7510</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remnev, M.</subfield><subfield code="0">(orcid)0000-0001-6975-1724</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roney, J. M.</subfield><subfield code="0">(orcid)0000-0001-7802-4617</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shiu, J.-G.</subfield><subfield code="0">(orcid)0000-0002-8478-5639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shwartz, B.</subfield><subfield code="0">(orcid)0000-0002-1456-1496</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unno, Y.</subfield><subfield code="0">(orcid)0000-0003-3355-765X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Tonder, R.</subfield><subfield code="0">(orcid)0000-0002-7448-4816</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volpe, R.</subfield><subfield code="0">(orcid)0000-0003-1782-2978</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computing and software for big science</subfield><subfield code="d">Cham, Switzerland : Springer International Publishing, 2017</subfield><subfield code="g">7(2023), 1 vom: Dez.</subfield><subfield code="w">(DE-627)1000743217</subfield><subfield code="w">(DE-600)2908677-2</subfield><subfield code="x">2510-2044</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41781-023-00105-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.1695337 |