Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks

Abstract We present the study of a fuzzy clustering algorithm for the Belle II electromagnetic calorimeter using Graph Neural Networks. We use a realistic detector simulation including simulated beam backgrounds and focus on the reconstruction of both isolated and overlapping photons. We find signif...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wemmer, F. [verfasserIn]

Haide, I.

Eppelt, J.

Ferber, T.

Beaubien, A.

Branchini, P.

Campajola, M.

Cecchi, C.

Cheema, P.

De Nardo, G.

Hearty, C.

Kuzmin, A.

Longo, S.

Manoni, E.

Meier, F.

Merola, M.

Miyabayashi, K.

Moneta, S.

Remnev, M.

Roney, J. M.

Shiu, J.-G.

Shwartz, B.

Unno, Y.

van Tonder, R.

Volpe, R.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Calorimeter

Photon reconstruction

Overlapping clusters

High background

Fuzzy clustering

Machine learning

Deep learning

Graph neural networks

End-to-end representation spaces

Anmerkung:

© The Author(s) 2023

Übergeordnetes Werk:

Enthalten in: Computing and software for big science - Cham, Switzerland : Springer International Publishing, 2017, 7(2023), 1 vom: Dez.

Übergeordnetes Werk:

volume:7 ; year:2023 ; number:1 ; month:12

Links:

Volltext

DOI / URN:

10.1007/s41781-023-00105-w

Katalog-ID:

SPR05410727X

Nicht das Richtige dabei?

Schreiben Sie uns!