A Novel Evolutionary Algorithm Inspired by Beans Dispersal
Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating...
Ausführliche Beschreibung
Autor*in: |
Zhang, Xiaoming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© the authors 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computational intelligence systems - Paris : Atlantis Press, 2008, 6(2013), 1 vom: Jan., Seite 79-86 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2013 ; number:1 ; month:01 ; pages:79-86 |
Links: |
---|
DOI / URN: |
10.1080/18756891.2013.756225 |
---|
Katalog-ID: |
SPR054190363 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054190363 | ||
003 | DE-627 | ||
005 | 20231228070408.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231228s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/18756891.2013.756225 |2 doi | |
035 | |a (DE-627)SPR054190363 | ||
035 | |a (SPR)18756891.2013.756225-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Xiaoming |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © the authors 2013 | ||
520 | |a Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. | ||
650 | 4 | |a evolutionary algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a swarm intelligence |7 (dpeaa)DE-He213 | |
650 | 4 | |a particle swarm optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a bean optimization algorithm |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sun, Bingyu |4 aut | |
700 | 1 | |a Mei, Tao |4 aut | |
700 | 1 | |a Wang, Rujing |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computational intelligence systems |d Paris : Atlantis Press, 2008 |g 6(2013), 1 vom: Jan., Seite 79-86 |w (DE-627)777781514 |w (DE-600)2754752-8 |x 1875-6883 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2013 |g number:1 |g month:01 |g pages:79-86 |
856 | 4 | 0 | |u https://dx.doi.org/10.1080/18756891.2013.756225 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2013 |e 1 |c 01 |h 79-86 |
author_variant |
x z xz b s bs t m tm r w rw |
---|---|
matchkey_str |
article:18756883:2013----::nvlvltoayloihisieb |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1080/18756891.2013.756225 doi (DE-627)SPR054190363 (SPR)18756891.2013.756225-e DE-627 ger DE-627 rakwb eng Zhang, Xiaoming verfasserin aut A Novel Evolutionary Algorithm Inspired by Beans Dispersal 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2013 Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 Sun, Bingyu aut Mei, Tao aut Wang, Rujing aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 6(2013), 1 vom: Jan., Seite 79-86 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:6 year:2013 number:1 month:01 pages:79-86 https://dx.doi.org/10.1080/18756891.2013.756225 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 01 79-86 |
spelling |
10.1080/18756891.2013.756225 doi (DE-627)SPR054190363 (SPR)18756891.2013.756225-e DE-627 ger DE-627 rakwb eng Zhang, Xiaoming verfasserin aut A Novel Evolutionary Algorithm Inspired by Beans Dispersal 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2013 Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 Sun, Bingyu aut Mei, Tao aut Wang, Rujing aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 6(2013), 1 vom: Jan., Seite 79-86 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:6 year:2013 number:1 month:01 pages:79-86 https://dx.doi.org/10.1080/18756891.2013.756225 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 01 79-86 |
allfields_unstemmed |
10.1080/18756891.2013.756225 doi (DE-627)SPR054190363 (SPR)18756891.2013.756225-e DE-627 ger DE-627 rakwb eng Zhang, Xiaoming verfasserin aut A Novel Evolutionary Algorithm Inspired by Beans Dispersal 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2013 Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 Sun, Bingyu aut Mei, Tao aut Wang, Rujing aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 6(2013), 1 vom: Jan., Seite 79-86 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:6 year:2013 number:1 month:01 pages:79-86 https://dx.doi.org/10.1080/18756891.2013.756225 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 01 79-86 |
allfieldsGer |
10.1080/18756891.2013.756225 doi (DE-627)SPR054190363 (SPR)18756891.2013.756225-e DE-627 ger DE-627 rakwb eng Zhang, Xiaoming verfasserin aut A Novel Evolutionary Algorithm Inspired by Beans Dispersal 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2013 Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 Sun, Bingyu aut Mei, Tao aut Wang, Rujing aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 6(2013), 1 vom: Jan., Seite 79-86 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:6 year:2013 number:1 month:01 pages:79-86 https://dx.doi.org/10.1080/18756891.2013.756225 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 01 79-86 |
allfieldsSound |
10.1080/18756891.2013.756225 doi (DE-627)SPR054190363 (SPR)18756891.2013.756225-e DE-627 ger DE-627 rakwb eng Zhang, Xiaoming verfasserin aut A Novel Evolutionary Algorithm Inspired by Beans Dispersal 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2013 Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 Sun, Bingyu aut Mei, Tao aut Wang, Rujing aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 6(2013), 1 vom: Jan., Seite 79-86 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:6 year:2013 number:1 month:01 pages:79-86 https://dx.doi.org/10.1080/18756891.2013.756225 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 1 01 79-86 |
language |
English |
source |
Enthalten in International journal of computational intelligence systems 6(2013), 1 vom: Jan., Seite 79-86 volume:6 year:2013 number:1 month:01 pages:79-86 |
sourceStr |
Enthalten in International journal of computational intelligence systems 6(2013), 1 vom: Jan., Seite 79-86 volume:6 year:2013 number:1 month:01 pages:79-86 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
evolutionary algorithm swarm intelligence particle swarm optimization bean optimization algorithm |
isfreeaccess_bool |
true |
container_title |
International journal of computational intelligence systems |
authorswithroles_txt_mv |
Zhang, Xiaoming @@aut@@ Sun, Bingyu @@aut@@ Mei, Tao @@aut@@ Wang, Rujing @@aut@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
777781514 |
id |
SPR054190363 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054190363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231228070408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/18756891.2013.756225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054190363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)18756891.2013.756225-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Evolutionary Algorithm Inspired by Beans Dispersal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">evolutionary algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swarm intelligence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bean optimization algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Bingyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rujing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">6(2013), 1 vom: Jan., Seite 79-86</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-86</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/18756891.2013.756225</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">79-86</subfield></datafield></record></collection>
|
author |
Zhang, Xiaoming |
spellingShingle |
Zhang, Xiaoming misc evolutionary algorithm misc swarm intelligence misc particle swarm optimization misc bean optimization algorithm A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
authorStr |
Zhang, Xiaoming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777781514 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-6883 |
topic_title |
A Novel Evolutionary Algorithm Inspired by Beans Dispersal evolutionary algorithm (dpeaa)DE-He213 swarm intelligence (dpeaa)DE-He213 particle swarm optimization (dpeaa)DE-He213 bean optimization algorithm (dpeaa)DE-He213 |
topic |
misc evolutionary algorithm misc swarm intelligence misc particle swarm optimization misc bean optimization algorithm |
topic_unstemmed |
misc evolutionary algorithm misc swarm intelligence misc particle swarm optimization misc bean optimization algorithm |
topic_browse |
misc evolutionary algorithm misc swarm intelligence misc particle swarm optimization misc bean optimization algorithm |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of computational intelligence systems |
hierarchy_parent_id |
777781514 |
hierarchy_top_title |
International journal of computational intelligence systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777781514 (DE-600)2754752-8 |
title |
A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
ctrlnum |
(DE-627)SPR054190363 (SPR)18756891.2013.756225-e |
title_full |
A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
author_sort |
Zhang, Xiaoming |
journal |
International journal of computational intelligence systems |
journalStr |
International journal of computational intelligence systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
79 |
author_browse |
Zhang, Xiaoming Sun, Bingyu Mei, Tao Wang, Rujing |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Xiaoming |
doi_str_mv |
10.1080/18756891.2013.756225 |
title_sort |
novel evolutionary algorithm inspired by beans dispersal |
title_auth |
A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
abstract |
Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. © the authors 2013 |
abstractGer |
Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. © the authors 2013 |
abstract_unstemmed |
Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. © the authors 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A Novel Evolutionary Algorithm Inspired by Beans Dispersal |
url |
https://dx.doi.org/10.1080/18756891.2013.756225 |
remote_bool |
true |
author2 |
Sun, Bingyu Mei, Tao Wang, Rujing |
author2Str |
Sun, Bingyu Mei, Tao Wang, Rujing |
ppnlink |
777781514 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/18756891.2013.756225 |
up_date |
2024-07-04T00:22:47.618Z |
_version_ |
1803605841144709120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054190363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231228070408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/18756891.2013.756225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054190363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)18756891.2013.756225-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaoming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Evolutionary Algorithm Inspired by Beans Dispersal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA) is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wets’ research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO) algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">evolutionary algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swarm intelligence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle swarm optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bean optimization algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Bingyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rujing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">6(2013), 1 vom: Jan., Seite 79-86</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-86</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/18756891.2013.756225</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">79-86</subfield></datafield></record></collection>
|
score |
7.402648 |