Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values
Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example...
Ausführliche Beschreibung
Autor*in: |
Piegat, Andrzej [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© the authors 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computational intelligence systems - Paris : Atlantis Press, 2008, 8(2015), 6 vom: Jan., Seite 1192-1209 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2015 ; number:6 ; month:01 ; pages:1192-1209 |
Links: |
---|
DOI / URN: |
10.1080/18756891.2015.1113756 |
---|
Katalog-ID: |
SPR054191777 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054191777 | ||
003 | DE-627 | ||
005 | 20231228070410.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231228s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/18756891.2015.1113756 |2 doi | |
035 | |a (DE-627)SPR054191777 | ||
035 | |a (SPR)18756891.2015.1113756-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Piegat, Andrzej |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © the authors 2015 | ||
520 | |a Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. | ||
650 | 4 | |a Interval arithmetic |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interval-precisiation arithmetic |7 (dpeaa)DE-He213 | |
650 | 4 | |a Granular computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interval equations |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computing with words |7 (dpeaa)DE-He213 | |
700 | 1 | |a Plucinski, Marcin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computational intelligence systems |d Paris : Atlantis Press, 2008 |g 8(2015), 6 vom: Jan., Seite 1192-1209 |w (DE-627)777781514 |w (DE-600)2754752-8 |x 1875-6883 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2015 |g number:6 |g month:01 |g pages:1192-1209 |
856 | 4 | 0 | |u https://dx.doi.org/10.1080/18756891.2015.1113756 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2015 |e 6 |c 01 |h 1192-1209 |
author_variant |
a p ap m p mp |
---|---|
matchkey_str |
article:18756883:2015----::oedatgsfhrmrtmtcfnevly |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/18756891.2015.1113756 doi (DE-627)SPR054191777 (SPR)18756891.2015.1113756-e DE-627 ger DE-627 rakwb eng Piegat, Andrzej verfasserin aut Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2015 Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 Plucinski, Marcin aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 6 vom: Jan., Seite 1192-1209 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:6 month:01 pages:1192-1209 https://dx.doi.org/10.1080/18756891.2015.1113756 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 6 01 1192-1209 |
spelling |
10.1080/18756891.2015.1113756 doi (DE-627)SPR054191777 (SPR)18756891.2015.1113756-e DE-627 ger DE-627 rakwb eng Piegat, Andrzej verfasserin aut Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2015 Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 Plucinski, Marcin aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 6 vom: Jan., Seite 1192-1209 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:6 month:01 pages:1192-1209 https://dx.doi.org/10.1080/18756891.2015.1113756 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 6 01 1192-1209 |
allfields_unstemmed |
10.1080/18756891.2015.1113756 doi (DE-627)SPR054191777 (SPR)18756891.2015.1113756-e DE-627 ger DE-627 rakwb eng Piegat, Andrzej verfasserin aut Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2015 Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 Plucinski, Marcin aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 6 vom: Jan., Seite 1192-1209 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:6 month:01 pages:1192-1209 https://dx.doi.org/10.1080/18756891.2015.1113756 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 6 01 1192-1209 |
allfieldsGer |
10.1080/18756891.2015.1113756 doi (DE-627)SPR054191777 (SPR)18756891.2015.1113756-e DE-627 ger DE-627 rakwb eng Piegat, Andrzej verfasserin aut Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2015 Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 Plucinski, Marcin aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 6 vom: Jan., Seite 1192-1209 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:6 month:01 pages:1192-1209 https://dx.doi.org/10.1080/18756891.2015.1113756 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 6 01 1192-1209 |
allfieldsSound |
10.1080/18756891.2015.1113756 doi (DE-627)SPR054191777 (SPR)18756891.2015.1113756-e DE-627 ger DE-627 rakwb eng Piegat, Andrzej verfasserin aut Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2015 Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 Plucinski, Marcin aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 6 vom: Jan., Seite 1192-1209 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:6 month:01 pages:1192-1209 https://dx.doi.org/10.1080/18756891.2015.1113756 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 6 01 1192-1209 |
language |
English |
source |
Enthalten in International journal of computational intelligence systems 8(2015), 6 vom: Jan., Seite 1192-1209 volume:8 year:2015 number:6 month:01 pages:1192-1209 |
sourceStr |
Enthalten in International journal of computational intelligence systems 8(2015), 6 vom: Jan., Seite 1192-1209 volume:8 year:2015 number:6 month:01 pages:1192-1209 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Interval arithmetic Interval-precisiation arithmetic Granular computing Interval equations Computing with words |
isfreeaccess_bool |
true |
container_title |
International journal of computational intelligence systems |
authorswithroles_txt_mv |
Piegat, Andrzej @@aut@@ Plucinski, Marcin @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
777781514 |
id |
SPR054191777 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054191777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231228070410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/18756891.2015.1113756</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054191777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)18756891.2015.1113756-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piegat, Andrzej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval-precisiation arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granular computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval equations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computing with words</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plucinski, Marcin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">8(2015), 6 vom: Jan., Seite 1192-1209</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1192-1209</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/18756891.2015.1113756</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="c">01</subfield><subfield code="h">1192-1209</subfield></datafield></record></collection>
|
author |
Piegat, Andrzej |
spellingShingle |
Piegat, Andrzej misc Interval arithmetic misc Interval-precisiation arithmetic misc Granular computing misc Interval equations misc Computing with words Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
authorStr |
Piegat, Andrzej |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777781514 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-6883 |
topic_title |
Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values Interval arithmetic (dpeaa)DE-He213 Interval-precisiation arithmetic (dpeaa)DE-He213 Granular computing (dpeaa)DE-He213 Interval equations (dpeaa)DE-He213 Computing with words (dpeaa)DE-He213 |
topic |
misc Interval arithmetic misc Interval-precisiation arithmetic misc Granular computing misc Interval equations misc Computing with words |
topic_unstemmed |
misc Interval arithmetic misc Interval-precisiation arithmetic misc Granular computing misc Interval equations misc Computing with words |
topic_browse |
misc Interval arithmetic misc Interval-precisiation arithmetic misc Granular computing misc Interval equations misc Computing with words |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of computational intelligence systems |
hierarchy_parent_id |
777781514 |
hierarchy_top_title |
International journal of computational intelligence systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777781514 (DE-600)2754752-8 |
title |
Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
ctrlnum |
(DE-627)SPR054191777 (SPR)18756891.2015.1113756-e |
title_full |
Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
author_sort |
Piegat, Andrzej |
journal |
International journal of computational intelligence systems |
journalStr |
International journal of computational intelligence systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1192 |
author_browse |
Piegat, Andrzej Plucinski, Marcin |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Piegat, Andrzej |
doi_str_mv |
10.1080/18756891.2015.1113756 |
title_sort |
some advantages of the rdm-arithmetic of intervally-precisiated values |
title_auth |
Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
abstract |
Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. © the authors 2015 |
abstractGer |
Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. © the authors 2015 |
abstract_unstemmed |
Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples. © the authors 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values |
url |
https://dx.doi.org/10.1080/18756891.2015.1113756 |
remote_bool |
true |
author2 |
Plucinski, Marcin |
author2Str |
Plucinski, Marcin |
ppnlink |
777781514 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/18756891.2015.1113756 |
up_date |
2024-07-04T00:23:04.573Z |
_version_ |
1803605858922266624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054191777</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231228070410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/18756891.2015.1113756</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054191777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)18756891.2015.1113756-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piegat, Andrzej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Advantages of the RDM-arithmetic of Intervally-Precisiated Values</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+ [5,9] = [6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to process different tasks that people solve intuitively. The most important advantages are: existence of inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of multiplication, possibility of achieving not only the solution span [x,̄x] but also the full, multidimensional solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty decreasing of original data items occurring in problems. All these advantages are illustrated and visualised by examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval-precisiation arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granular computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval equations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computing with words</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plucinski, Marcin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">8(2015), 6 vom: Jan., Seite 1192-1209</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1192-1209</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/18756891.2015.1113756</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="c">01</subfield><subfield code="h">1192-1209</subfield></datafield></record></collection>
|
score |
7.401639 |