OALDPC: oversampling approach based on local density peaks clustering for imbalanced classification

Abstract SMOTE has been favored by researchers in improving imbalanced classification. Nevertheless, imbalances within minority classes and noise generation are two main challenges in SMOTE. Recently, clustering-based oversampling methods are developed to improve SMOTE by eliminating imbalances with...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Li, Junnan [verfasserIn]

Zhu, Qingsheng

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Class-imbalanced learning

Class-imbalanced classification

Oversampling technique

Local density peaks

Natural neighbor

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 53(2023), 24 vom: 30. Nov., Seite 30987-31017

Übergeordnetes Werk:

volume:53 ; year:2023 ; number:24 ; day:30 ; month:11 ; pages:30987-31017

Links:

Volltext

DOI / URN:

10.1007/s10489-023-05030-4

Katalog-ID:

SPR054192943

Nicht das Richtige dabei?

Schreiben Sie uns!