Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway
Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon seques...
Ausführliche Beschreibung
Autor*in: |
Zhang, Zongwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Water, air & soil pollution - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971, 235(2023), 1 vom: 30. Dez. |
---|---|
Übergeordnetes Werk: |
volume:235 ; year:2023 ; number:1 ; day:30 ; month:12 |
Links: |
---|
DOI / URN: |
10.1007/s11270-023-06832-5 |
---|
Katalog-ID: |
SPR054207800 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR054207800 | ||
003 | DE-627 | ||
005 | 20240126064659.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231230s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11270-023-06832-5 |2 doi | |
035 | |a (DE-627)SPR054207800 | ||
035 | |a (SPR)s11270-023-06832-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Zongwei |e verfasserin |0 (orcid)0000-0003-0737-4622 |4 aut | |
245 | 1 | 0 | |a Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. | ||
650 | 4 | |a Land use |7 (dpeaa)DE-He213 | |
650 | 4 | |a Jatropha oil |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon sequestration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon emission |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainable aviation fuel |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Junqi |4 aut | |
700 | 1 | |a Wang, Zihan |4 aut | |
700 | 1 | |a Liu, Haonan |4 aut | |
700 | 1 | |a Wei, Keheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water, air & soil pollution |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 |g 235(2023), 1 vom: 30. Dez. |w (DE-627)271349417 |w (DE-600)1479824-4 |x 1573-2932 |7 nnns |
773 | 1 | 8 | |g volume:235 |g year:2023 |g number:1 |g day:30 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11270-023-06832-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 235 |j 2023 |e 1 |b 30 |c 12 |
author_variant |
z z zz j l jl z w zw h l hl k w kw |
---|---|
matchkey_str |
article:15732932:2023----::siaigolabneusrtoojtohfrutial |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11270-023-06832-5 doi (DE-627)SPR054207800 (SPR)s11270-023-06832-5-e DE-627 ger DE-627 rakwb eng Zhang, Zongwei verfasserin (orcid)0000-0003-0737-4622 aut Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 Li, Junqi aut Wang, Zihan aut Liu, Haonan aut Wei, Keheng aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 235(2023), 1 vom: 30. Dez. (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:235 year:2023 number:1 day:30 month:12 https://dx.doi.org/10.1007/s11270-023-06832-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 1 30 12 |
spelling |
10.1007/s11270-023-06832-5 doi (DE-627)SPR054207800 (SPR)s11270-023-06832-5-e DE-627 ger DE-627 rakwb eng Zhang, Zongwei verfasserin (orcid)0000-0003-0737-4622 aut Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 Li, Junqi aut Wang, Zihan aut Liu, Haonan aut Wei, Keheng aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 235(2023), 1 vom: 30. Dez. (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:235 year:2023 number:1 day:30 month:12 https://dx.doi.org/10.1007/s11270-023-06832-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 1 30 12 |
allfields_unstemmed |
10.1007/s11270-023-06832-5 doi (DE-627)SPR054207800 (SPR)s11270-023-06832-5-e DE-627 ger DE-627 rakwb eng Zhang, Zongwei verfasserin (orcid)0000-0003-0737-4622 aut Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 Li, Junqi aut Wang, Zihan aut Liu, Haonan aut Wei, Keheng aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 235(2023), 1 vom: 30. Dez. (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:235 year:2023 number:1 day:30 month:12 https://dx.doi.org/10.1007/s11270-023-06832-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 1 30 12 |
allfieldsGer |
10.1007/s11270-023-06832-5 doi (DE-627)SPR054207800 (SPR)s11270-023-06832-5-e DE-627 ger DE-627 rakwb eng Zhang, Zongwei verfasserin (orcid)0000-0003-0737-4622 aut Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 Li, Junqi aut Wang, Zihan aut Liu, Haonan aut Wei, Keheng aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 235(2023), 1 vom: 30. Dez. (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:235 year:2023 number:1 day:30 month:12 https://dx.doi.org/10.1007/s11270-023-06832-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 1 30 12 |
allfieldsSound |
10.1007/s11270-023-06832-5 doi (DE-627)SPR054207800 (SPR)s11270-023-06832-5-e DE-627 ger DE-627 rakwb eng Zhang, Zongwei verfasserin (orcid)0000-0003-0737-4622 aut Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 Li, Junqi aut Wang, Zihan aut Liu, Haonan aut Wei, Keheng aut Enthalten in Water, air & soil pollution Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971 235(2023), 1 vom: 30. Dez. (DE-627)271349417 (DE-600)1479824-4 1573-2932 nnns volume:235 year:2023 number:1 day:30 month:12 https://dx.doi.org/10.1007/s11270-023-06832-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 235 2023 1 30 12 |
language |
English |
source |
Enthalten in Water, air & soil pollution 235(2023), 1 vom: 30. Dez. volume:235 year:2023 number:1 day:30 month:12 |
sourceStr |
Enthalten in Water, air & soil pollution 235(2023), 1 vom: 30. Dez. volume:235 year:2023 number:1 day:30 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Land use Jatropha oil Carbon sequestration Carbon emission Sustainable aviation fuel |
isfreeaccess_bool |
false |
container_title |
Water, air & soil pollution |
authorswithroles_txt_mv |
Zhang, Zongwei @@aut@@ Li, Junqi @@aut@@ Wang, Zihan @@aut@@ Liu, Haonan @@aut@@ Wei, Keheng @@aut@@ |
publishDateDaySort_date |
2023-12-30T00:00:00Z |
hierarchy_top_id |
271349417 |
id |
SPR054207800 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054207800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240126064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231230s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11270-023-06832-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054207800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11270-023-06832-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Zongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0737-4622</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jatropha oil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon emission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable aviation fuel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zihan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Haonan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Keheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971</subfield><subfield code="g">235(2023), 1 vom: 30. Dez.</subfield><subfield code="w">(DE-627)271349417</subfield><subfield code="w">(DE-600)1479824-4</subfield><subfield code="x">1573-2932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11270-023-06832-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Zhang, Zongwei |
spellingShingle |
Zhang, Zongwei misc Land use misc Jatropha oil misc Carbon sequestration misc Carbon emission misc Sustainable aviation fuel Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
authorStr |
Zhang, Zongwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271349417 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-2932 |
topic_title |
Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway Land use (dpeaa)DE-He213 Jatropha oil (dpeaa)DE-He213 Carbon sequestration (dpeaa)DE-He213 Carbon emission (dpeaa)DE-He213 Sustainable aviation fuel (dpeaa)DE-He213 |
topic |
misc Land use misc Jatropha oil misc Carbon sequestration misc Carbon emission misc Sustainable aviation fuel |
topic_unstemmed |
misc Land use misc Jatropha oil misc Carbon sequestration misc Carbon emission misc Sustainable aviation fuel |
topic_browse |
misc Land use misc Jatropha oil misc Carbon sequestration misc Carbon emission misc Sustainable aviation fuel |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water, air & soil pollution |
hierarchy_parent_id |
271349417 |
hierarchy_top_title |
Water, air & soil pollution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271349417 (DE-600)1479824-4 |
title |
Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
ctrlnum |
(DE-627)SPR054207800 (SPR)s11270-023-06832-5-e |
title_full |
Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
author_sort |
Zhang, Zongwei |
journal |
Water, air & soil pollution |
journalStr |
Water, air & soil pollution |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Zongwei Li, Junqi Wang, Zihan Liu, Haonan Wei, Keheng |
container_volume |
235 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Zongwei |
doi_str_mv |
10.1007/s11270-023-06832-5 |
normlink |
(ORCID)0000-0003-0737-4622 |
normlink_prefix_str_mv |
(orcid)0000-0003-0737-4622 |
title_sort |
estimating soil carbon sequestration of jatropha for sustainable aviation fuel pathway |
title_auth |
Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
abstract |
Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway |
url |
https://dx.doi.org/10.1007/s11270-023-06832-5 |
remote_bool |
true |
author2 |
Li, Junqi Wang, Zihan Liu, Haonan Wei, Keheng |
author2Str |
Li, Junqi Wang, Zihan Liu, Haonan Wei, Keheng |
ppnlink |
271349417 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11270-023-06832-5 |
up_date |
2024-07-04T00:28:13.488Z |
_version_ |
1803606182842073088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054207800</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240126064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231230s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11270-023-06832-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054207800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11270-023-06832-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Zongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0737-4622</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating Soil Carbon Sequestration of Jatropha for Sustainable Aviation Fuel Pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The sustainable aviation fuel (SAF) raw material planting process will inevitably cause carbon emissions from induced land use change (ILUC). However, limited by the regional specificity of energy plants, the ILUC emissions value of SAF is less considerable in the case of soil carbon sequestration during the raw material planting process. Therefore, this study used the CENTURY model to predict the carbon sequestration of soil in Jatropha plantations and compared it with the preparation of aviation fuel from soybean oil. The results showed that, when considering ILUC combined with the carbon sequestration effect of the raw material planting land, life-cycle greenhouse gas emissions of the two methods for producing Jatropha oil–based aviation kerosene (pathway 1: oil residue used for fertilizer or power generation; pathway 2: oil residue detoxified and used for animal feed) were −36.1 g $ CO_{2} $e/MJ and −59.4 g $ CO_{2} $e/MJ, respectively. The life-cycle greenhouse gas emissions of soybean oil–based aviation kerosene under the condition of straw returning and without straw returning are 2.9 g $ CO_{2} $e/MJ and 66.1 g $ CO_{2} $e/MJ, respectively. Compared with petroleum aviation fuel, the emission reduction potential of Jatropha oil-based aviation kerosene increased from 84.38% and 110.56% to 140.6% and 166.7%, respectively, based on the original core life cycle assessment (cLCA)+ILUC, considering soil carbon sequestration. The emission reduction potential of soybean-based aviation kerosene increased from 42.81 to 96.7% (with straw returned to the field) and 25.7% (without straw returned to the field). The results show that Jatropha oil–based aviation kerosene has great potential in terms of negative carbon emissions when considering the carbon sequestration effect of soil in the energy plant planting area. In the future, large-scale planting on marginal land with a climate suitable for Jatropha growth will help the civil aviation industry reduce carbon emissions and achieve carbon neutrality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jatropha oil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon emission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable aviation fuel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zihan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Haonan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Keheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water, air & soil pollution</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1971</subfield><subfield code="g">235(2023), 1 vom: 30. Dez.</subfield><subfield code="w">(DE-627)271349417</subfield><subfield code="w">(DE-600)1479824-4</subfield><subfield code="x">1573-2932</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:235</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11270-023-06832-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">235</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.3993473 |