Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network
Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the si...
Ausführliche Beschreibung
Autor*in: |
Gayathri, K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© the authors 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computational intelligence systems - Paris : Atlantis Press, 2008, 8(2015), 1 vom: 01. Jan., Seite 95-105 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2015 ; number:1 ; day:01 ; month:01 ; pages:95-105 |
Links: |
---|
DOI / URN: |
10.2991/ijcis.2015.8.1.8 |
---|
Katalog-ID: |
SPR054239338 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054239338 | ||
003 | DE-627 | ||
005 | 20240103064913.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240103s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2991/ijcis.2015.8.1.8 |2 doi | |
035 | |a (DE-627)SPR054239338 | ||
035 | |a (SPR)ijcis.2015.8.1.8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Gayathri, K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © the authors 2017 | ||
520 | |a Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. | ||
650 | 4 | |a Double Circuit |7 (dpeaa)DE-He213 | |
650 | 4 | |a EHV transmission line |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fault locator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reconstruction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Radial basis function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Support vector machines |7 (dpeaa)DE-He213 | |
650 | 4 | |a Neural network |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kumarappan, N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computational intelligence systems |d Paris : Atlantis Press, 2008 |g 8(2015), 1 vom: 01. Jan., Seite 95-105 |w (DE-627)777781514 |w (DE-600)2754752-8 |x 1875-6883 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2015 |g number:1 |g day:01 |g month:01 |g pages:95-105 |
856 | 4 | 0 | |u https://dx.doi.org/10.2991/ijcis.2015.8.1.8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2015 |e 1 |b 01 |c 01 |h 95-105 |
author_variant |
k g kg n k nk |
---|---|
matchkey_str |
article:18756883:2015----::obeicievrnmsiniefutoainihbbsduprvcomcienrcntutdnusae |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.2991/ijcis.2015.8.1.8 doi (DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e DE-627 ger DE-627 rakwb eng Gayathri, K. verfasserin aut Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2017 Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Kumarappan, N. aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 1 vom: 01. Jan., Seite 95-105 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:1 day:01 month:01 pages:95-105 https://dx.doi.org/10.2991/ijcis.2015.8.1.8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 1 01 01 95-105 |
spelling |
10.2991/ijcis.2015.8.1.8 doi (DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e DE-627 ger DE-627 rakwb eng Gayathri, K. verfasserin aut Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2017 Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Kumarappan, N. aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 1 vom: 01. Jan., Seite 95-105 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:1 day:01 month:01 pages:95-105 https://dx.doi.org/10.2991/ijcis.2015.8.1.8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 1 01 01 95-105 |
allfields_unstemmed |
10.2991/ijcis.2015.8.1.8 doi (DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e DE-627 ger DE-627 rakwb eng Gayathri, K. verfasserin aut Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2017 Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Kumarappan, N. aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 1 vom: 01. Jan., Seite 95-105 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:1 day:01 month:01 pages:95-105 https://dx.doi.org/10.2991/ijcis.2015.8.1.8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 1 01 01 95-105 |
allfieldsGer |
10.2991/ijcis.2015.8.1.8 doi (DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e DE-627 ger DE-627 rakwb eng Gayathri, K. verfasserin aut Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2017 Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Kumarappan, N. aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 1 vom: 01. Jan., Seite 95-105 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:1 day:01 month:01 pages:95-105 https://dx.doi.org/10.2991/ijcis.2015.8.1.8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 1 01 01 95-105 |
allfieldsSound |
10.2991/ijcis.2015.8.1.8 doi (DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e DE-627 ger DE-627 rakwb eng Gayathri, K. verfasserin aut Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2017 Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 Kumarappan, N. aut Enthalten in International journal of computational intelligence systems Paris : Atlantis Press, 2008 8(2015), 1 vom: 01. Jan., Seite 95-105 (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:8 year:2015 number:1 day:01 month:01 pages:95-105 https://dx.doi.org/10.2991/ijcis.2015.8.1.8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2015 1 01 01 95-105 |
language |
English |
source |
Enthalten in International journal of computational intelligence systems 8(2015), 1 vom: 01. Jan., Seite 95-105 volume:8 year:2015 number:1 day:01 month:01 pages:95-105 |
sourceStr |
Enthalten in International journal of computational intelligence systems 8(2015), 1 vom: 01. Jan., Seite 95-105 volume:8 year:2015 number:1 day:01 month:01 pages:95-105 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Double Circuit EHV transmission line Fault locator Reconstruction Radial basis function Support vector machines Neural network |
isfreeaccess_bool |
true |
container_title |
International journal of computational intelligence systems |
authorswithroles_txt_mv |
Gayathri, K. @@aut@@ Kumarappan, N. @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
777781514 |
id |
SPR054239338 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054239338</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240103064913.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240103s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/ijcis.2015.8.1.8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054239338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ijcis.2015.8.1.8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gayathri, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double Circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EHV transmission line</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault locator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial basis function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support vector machines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumarappan, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">8(2015), 1 vom: 01. Jan., Seite 95-105</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:95-105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/ijcis.2015.8.1.8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">95-105</subfield></datafield></record></collection>
|
author |
Gayathri, K. |
spellingShingle |
Gayathri, K. misc Double Circuit misc EHV transmission line misc Fault locator misc Reconstruction misc Radial basis function misc Support vector machines misc Neural network Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
authorStr |
Gayathri, K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777781514 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-6883 |
topic_title |
Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network Double Circuit (dpeaa)DE-He213 EHV transmission line (dpeaa)DE-He213 Fault locator (dpeaa)DE-He213 Reconstruction (dpeaa)DE-He213 Radial basis function (dpeaa)DE-He213 Support vector machines (dpeaa)DE-He213 Neural network (dpeaa)DE-He213 |
topic |
misc Double Circuit misc EHV transmission line misc Fault locator misc Reconstruction misc Radial basis function misc Support vector machines misc Neural network |
topic_unstemmed |
misc Double Circuit misc EHV transmission line misc Fault locator misc Reconstruction misc Radial basis function misc Support vector machines misc Neural network |
topic_browse |
misc Double Circuit misc EHV transmission line misc Fault locator misc Reconstruction misc Radial basis function misc Support vector machines misc Neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of computational intelligence systems |
hierarchy_parent_id |
777781514 |
hierarchy_top_title |
International journal of computational intelligence systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777781514 (DE-600)2754752-8 |
title |
Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
ctrlnum |
(DE-627)SPR054239338 (SPR)ijcis.2015.8.1.8-e |
title_full |
Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
author_sort |
Gayathri, K. |
journal |
International journal of computational intelligence systems |
journalStr |
International journal of computational intelligence systems |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
95 |
author_browse |
Gayathri, K. Kumarappan, N. |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Gayathri, K. |
doi_str_mv |
10.2991/ijcis.2015.8.1.8 |
title_sort |
double circuit ehv transmission lines fault location with rbf based support vector machine and reconstructed input scaled conjugate gradient based neural network |
title_auth |
Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
abstract |
Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. © the authors 2017 |
abstractGer |
Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. © the authors 2017 |
abstract_unstemmed |
Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network. © the authors 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network |
url |
https://dx.doi.org/10.2991/ijcis.2015.8.1.8 |
remote_bool |
true |
author2 |
Kumarappan, N. |
author2Str |
Kumarappan, N. |
ppnlink |
777781514 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2991/ijcis.2015.8.1.8 |
up_date |
2024-07-04T00:37:51.315Z |
_version_ |
1803606788742840320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054239338</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240103064913.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240103s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/ijcis.2015.8.1.8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054239338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ijcis.2015.8.1.8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gayathri, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Double Circuit EHV Transmission Lines Fault Location with RBF Based Support Vector Machine and Reconstructed Input Scaled Conjugate Gradient Based Neural Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new algorithm is developed to enhance the solution for the problems associated with double circuit transmission lines for the mutual coupling between the two circuits under fault conditions and which is highly variable in nature. The algorithm depends on the three-line voltages and the six line currents of double circuit lines at one end. It relies on the application of Support Vector Machine (SVM) and frequency characteristics of the measured single end positive sequence voltage and current measurement of transient signals of the system. Fault resistance, mutual coupling between two circuits and initial prefault conditions are considered. The accuracy of this method has been assessed using a fault simulation software program. In the first state, the accuracy of the method was determined on the basis of SVM reconstructed method. In the second state, this method utilizes voltage and current data acquired at one common end of the two lines. This paper proposes a new hybrid approach for fault location on Extra High Voltage (EHV) lines using RBF based SVM with reconstructed input and Scaled Conjugate Gradient (SCALCG) based neural network method. Sample inputs are determined by MATLAB. The average error fault location in 400kV and 150km line is tested and the results prove that the proposed method is effective and reduces the error within a short duration of time using both RBF based reconstructed input of SVM and SCALCG based neural network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double Circuit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EHV transmission line</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault locator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial basis function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support vector machines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumarappan, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Paris : Atlantis Press, 2008</subfield><subfield code="g">8(2015), 1 vom: 01. Jan., Seite 95-105</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:95-105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/ijcis.2015.8.1.8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">95-105</subfield></datafield></record></collection>
|
score |
7.401865 |