Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity
Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of differ...
Ausführliche Beschreibung
Autor*in: |
Zhang, Haoyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Rock mechanics and rock engineering - Wien [u.a.] : Springer, 1969, 57(2023), 1 vom: 07. Okt., Seite 325-349 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2023 ; number:1 ; day:07 ; month:10 ; pages:325-349 |
Links: |
---|
DOI / URN: |
10.1007/s00603-023-03527-5 |
---|
Katalog-ID: |
SPR054259118 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054259118 | ||
003 | DE-627 | ||
005 | 20240105064715.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240105s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00603-023-03527-5 |2 doi | |
035 | |a (DE-627)SPR054259118 | ||
035 | |a (SPR)s00603-023-03527-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Haoyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. | ||
520 | |a Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. | ||
650 | 4 | |a Multi-cluster fracturing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reservoir heterogeneity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydraulic fracture network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Numerical simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cohesive zone model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Junbin |4 aut | |
700 | 1 | |a Li, Ziyan |4 aut | |
700 | 1 | |a Hu, Heng |4 aut | |
700 | 1 | |a Mei, Yu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Rock mechanics and rock engineering |d Wien [u.a.] : Springer, 1969 |g 57(2023), 1 vom: 07. Okt., Seite 325-349 |w (DE-627)270128352 |w (DE-600)1476578-0 |x 1434-453X |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2023 |g number:1 |g day:07 |g month:10 |g pages:325-349 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00603-023-03527-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 57 |j 2023 |e 1 |b 07 |c 10 |h 325-349 |
author_variant |
h z hz j c jc z l zl h h hh y m ym |
---|---|
matchkey_str |
article:1434453X:2023----::ueiasmltoomlilsefatrnuightixaiyeednchsvznmdlnsae |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00603-023-03527-5 doi (DE-627)SPR054259118 (SPR)s00603-023-03527-5-e DE-627 ger DE-627 rakwb eng Zhang, Haoyu verfasserin aut Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 Chen, Junbin aut Li, Ziyan aut Hu, Heng aut Mei, Yu aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 57(2023), 1 vom: 07. Okt., Seite 325-349 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:57 year:2023 number:1 day:07 month:10 pages:325-349 https://dx.doi.org/10.1007/s00603-023-03527-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2023 1 07 10 325-349 |
spelling |
10.1007/s00603-023-03527-5 doi (DE-627)SPR054259118 (SPR)s00603-023-03527-5-e DE-627 ger DE-627 rakwb eng Zhang, Haoyu verfasserin aut Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 Chen, Junbin aut Li, Ziyan aut Hu, Heng aut Mei, Yu aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 57(2023), 1 vom: 07. Okt., Seite 325-349 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:57 year:2023 number:1 day:07 month:10 pages:325-349 https://dx.doi.org/10.1007/s00603-023-03527-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2023 1 07 10 325-349 |
allfields_unstemmed |
10.1007/s00603-023-03527-5 doi (DE-627)SPR054259118 (SPR)s00603-023-03527-5-e DE-627 ger DE-627 rakwb eng Zhang, Haoyu verfasserin aut Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 Chen, Junbin aut Li, Ziyan aut Hu, Heng aut Mei, Yu aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 57(2023), 1 vom: 07. Okt., Seite 325-349 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:57 year:2023 number:1 day:07 month:10 pages:325-349 https://dx.doi.org/10.1007/s00603-023-03527-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2023 1 07 10 325-349 |
allfieldsGer |
10.1007/s00603-023-03527-5 doi (DE-627)SPR054259118 (SPR)s00603-023-03527-5-e DE-627 ger DE-627 rakwb eng Zhang, Haoyu verfasserin aut Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 Chen, Junbin aut Li, Ziyan aut Hu, Heng aut Mei, Yu aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 57(2023), 1 vom: 07. Okt., Seite 325-349 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:57 year:2023 number:1 day:07 month:10 pages:325-349 https://dx.doi.org/10.1007/s00603-023-03527-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2023 1 07 10 325-349 |
allfieldsSound |
10.1007/s00603-023-03527-5 doi (DE-627)SPR054259118 (SPR)s00603-023-03527-5-e DE-627 ger DE-627 rakwb eng Zhang, Haoyu verfasserin aut Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 Chen, Junbin aut Li, Ziyan aut Hu, Heng aut Mei, Yu aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 57(2023), 1 vom: 07. Okt., Seite 325-349 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:57 year:2023 number:1 day:07 month:10 pages:325-349 https://dx.doi.org/10.1007/s00603-023-03527-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2023 1 07 10 325-349 |
language |
English |
source |
Enthalten in Rock mechanics and rock engineering 57(2023), 1 vom: 07. Okt., Seite 325-349 volume:57 year:2023 number:1 day:07 month:10 pages:325-349 |
sourceStr |
Enthalten in Rock mechanics and rock engineering 57(2023), 1 vom: 07. Okt., Seite 325-349 volume:57 year:2023 number:1 day:07 month:10 pages:325-349 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multi-cluster fracturing Reservoir heterogeneity Hydraulic fracture network Numerical simulation Cohesive zone model |
isfreeaccess_bool |
false |
container_title |
Rock mechanics and rock engineering |
authorswithroles_txt_mv |
Zhang, Haoyu @@aut@@ Chen, Junbin @@aut@@ Li, Ziyan @@aut@@ Hu, Heng @@aut@@ Mei, Yu @@aut@@ |
publishDateDaySort_date |
2023-10-07T00:00:00Z |
hierarchy_top_id |
270128352 |
id |
SPR054259118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054259118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240105064715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-023-03527-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054259118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-023-03527-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-cluster fracturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir heterogeneity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic fracture network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive zone model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Junbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ziyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Heng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">57(2023), 1 vom: 07. Okt., Seite 325-349</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:325-349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-023-03527-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">10</subfield><subfield code="h">325-349</subfield></datafield></record></collection>
|
author |
Zhang, Haoyu |
spellingShingle |
Zhang, Haoyu misc Multi-cluster fracturing misc Reservoir heterogeneity misc Hydraulic fracture network misc Numerical simulation misc Cohesive zone model Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
authorStr |
Zhang, Haoyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270128352 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1434-453X |
topic_title |
Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity Multi-cluster fracturing (dpeaa)DE-He213 Reservoir heterogeneity (dpeaa)DE-He213 Hydraulic fracture network (dpeaa)DE-He213 Numerical simulation (dpeaa)DE-He213 Cohesive zone model (dpeaa)DE-He213 |
topic |
misc Multi-cluster fracturing misc Reservoir heterogeneity misc Hydraulic fracture network misc Numerical simulation misc Cohesive zone model |
topic_unstemmed |
misc Multi-cluster fracturing misc Reservoir heterogeneity misc Hydraulic fracture network misc Numerical simulation misc Cohesive zone model |
topic_browse |
misc Multi-cluster fracturing misc Reservoir heterogeneity misc Hydraulic fracture network misc Numerical simulation misc Cohesive zone model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Rock mechanics and rock engineering |
hierarchy_parent_id |
270128352 |
hierarchy_top_title |
Rock mechanics and rock engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270128352 (DE-600)1476578-0 |
title |
Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
ctrlnum |
(DE-627)SPR054259118 (SPR)s00603-023-03527-5-e |
title_full |
Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
author_sort |
Zhang, Haoyu |
journal |
Rock mechanics and rock engineering |
journalStr |
Rock mechanics and rock engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
325 |
author_browse |
Zhang, Haoyu Chen, Junbin Li, Ziyan Hu, Heng Mei, Yu |
container_volume |
57 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Haoyu |
doi_str_mv |
10.1007/s00603-023-03527-5 |
title_sort |
numerical simulation of multi-cluster fracturing using the triaxiality dependent cohesive zone model in a shale reservoir with mineral heterogeneity |
title_auth |
Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
abstract |
Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV. Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity |
url |
https://dx.doi.org/10.1007/s00603-023-03527-5 |
remote_bool |
true |
author2 |
Chen, Junbin Li, Ziyan Hu, Heng Mei, Yu |
author2Str |
Chen, Junbin Li, Ziyan Hu, Heng Mei, Yu |
ppnlink |
270128352 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00603-023-03527-5 |
up_date |
2024-07-04T00:44:05.159Z |
_version_ |
1803607180750880768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054259118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240105064715.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240105s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-023-03527-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054259118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-023-03527-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation of Multi-cluster Fracturing Using the Triaxiality Dependent Cohesive Zone Model in a Shale Reservoir with Mineral Heterogeneity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are still some major issues in the study of fracture network evolution during multi-cluster fracturing in shale reservoirs, such as the simplistic assumption that reservoir rocks are homogeneous and completely brittle, without considering that real rocks are often aggregates of different minerals and may present ductility and heterogeneity. It is important to study the evolution of the multi-cluster fracture network in quasi-brittle shale reservoirs to improve the stimulated reservoir volume (SRV). For this purpose, a 2D, coupled stress-seepage-damage field multi-cluster fracturing numerical model with global cohesive zone was developed in this paper. We conducted triaxial compression acoustic emission experiments using real shale samples and developed a generic trapezoidal TSL softening model that includes triaxial effects. The globally embedded 0-thickness cohesive elements ensures that hydraulic fractures can propagate randomly and thus reflect stress interference among multiple clusters. At the same time, the X-ray diffraction (XRD) experiment was used to determine the mineral content of rock, and the finite element mesh was then processed using the Weibull distribution probability density function to simulate the mineral heterogeneity of rock. In addition, the dynamic distribution of injection fluid flow during multi-cluster fracturing is implemented based on the Bernoulli equation. The cohesive parameters were validated by Brazilian splitting test, and the model was then used to parametrically study the evolution law of the fracture network and the variation characteristics of the flow rate into each cluster. The results show that using conventional bilinear TSL will result in a larger SRV than trapezoidal TSL, and reservoir heterogeneity may further exaggerate the drainage area when using bilinear TSL model. In addition, compared with a homogeneous isotropic reservoir, a highly heterogeneous reservoir has a more balanced flow rate into each cluster during multi-cluster fracturing, and this can significantly increase the complexity of fracture network. By increasing the number of clusters, it is possible to alleviate the stress interference on some internal clusters, which may also promote frequent fracture merging around the wellbore. Compared with increasing the number of clusters, reducing the perforation diameter can better compensate for the stress interference suffered by internal clusters, and make the flow rate into each cluster more balanced, thus improving the SRV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights The trapezoidal traction separation law can describe the damage softening behavior of quasi-brittle reservoirs.The fracture network formed using the bilinear traction separation law is more complex than the trapezoidal traction separation law.Heterogeneous reservoirs may form a more complex fracture network than homogeneous reservoirs during multi-cluster hydraulic fracturing.Uniformly increasing the number of clusters with small spacing has a limited effect on the uniformity of the flow rate into each cluster.Reducing the perforation diameter is an effective method to balance the flow rate into each cluster by weakening the effect of stress interference.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-cluster fracturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir heterogeneity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic fracture network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive zone model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Junbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ziyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Heng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Yu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">57(2023), 1 vom: 07. Okt., Seite 325-349</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:325-349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-023-03527-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">10</subfield><subfield code="h">325-349</subfield></datafield></record></collection>
|
score |
7.400753 |