Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions
Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find general...
Ausführliche Beschreibung
Autor*in: |
Ali, M. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Authors 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Statistical Theory and Applications - Paris : Atlantis Press, 2002, 20(2021), 1 vom: 05. Feb., Seite 132-148 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2021 ; number:1 ; day:05 ; month:02 ; pages:132-148 |
Links: |
---|
DOI / URN: |
10.2991/jsta.d.210129.001 |
---|
Katalog-ID: |
SPR054346525 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054346525 | ||
003 | DE-627 | ||
005 | 20240111064658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240111s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2991/jsta.d.210129.001 |2 doi | |
035 | |a (DE-627)SPR054346525 | ||
035 | |a (SPR)jsta.d.210129.001-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ali, M. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Authors 2021 | ||
520 | |a Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. | ||
650 | 4 | |a Transmuted map |7 (dpeaa)DE-He213 | |
650 | 4 | |a Order Statistics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Weibull distribution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Beta distribution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hazard function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Continuous distributions |7 (dpeaa)DE-He213 | |
700 | 1 | |a Athar, Haseeb |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of Statistical Theory and Applications |d Paris : Atlantis Press, 2002 |g 20(2021), 1 vom: 05. Feb., Seite 132-148 |w (DE-627)802538924 |w (DE-600)2798845-4 |x 2214-1766 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2021 |g number:1 |g day:05 |g month:02 |g pages:132-148 |
856 | 4 | 0 | |u https://dx.doi.org/10.2991/jsta.d.210129.001 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2021 |e 1 |b 05 |c 02 |h 132-148 |
author_variant |
m a a ma maa h a ha |
---|---|
matchkey_str |
article:22141766:2021----::eeaiernmpetasuedsrbtofreeaigaiisf |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.2991/jsta.d.210129.001 doi (DE-627)SPR054346525 (SPR)jsta.d.210129.001-e DE-627 ger DE-627 rakwb eng Ali, M. A. verfasserin aut Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2021 Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 Athar, Haseeb aut Enthalten in Journal of Statistical Theory and Applications Paris : Atlantis Press, 2002 20(2021), 1 vom: 05. Feb., Seite 132-148 (DE-627)802538924 (DE-600)2798845-4 2214-1766 nnns volume:20 year:2021 number:1 day:05 month:02 pages:132-148 https://dx.doi.org/10.2991/jsta.d.210129.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 1 05 02 132-148 |
spelling |
10.2991/jsta.d.210129.001 doi (DE-627)SPR054346525 (SPR)jsta.d.210129.001-e DE-627 ger DE-627 rakwb eng Ali, M. A. verfasserin aut Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2021 Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 Athar, Haseeb aut Enthalten in Journal of Statistical Theory and Applications Paris : Atlantis Press, 2002 20(2021), 1 vom: 05. Feb., Seite 132-148 (DE-627)802538924 (DE-600)2798845-4 2214-1766 nnns volume:20 year:2021 number:1 day:05 month:02 pages:132-148 https://dx.doi.org/10.2991/jsta.d.210129.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 1 05 02 132-148 |
allfields_unstemmed |
10.2991/jsta.d.210129.001 doi (DE-627)SPR054346525 (SPR)jsta.d.210129.001-e DE-627 ger DE-627 rakwb eng Ali, M. A. verfasserin aut Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2021 Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 Athar, Haseeb aut Enthalten in Journal of Statistical Theory and Applications Paris : Atlantis Press, 2002 20(2021), 1 vom: 05. Feb., Seite 132-148 (DE-627)802538924 (DE-600)2798845-4 2214-1766 nnns volume:20 year:2021 number:1 day:05 month:02 pages:132-148 https://dx.doi.org/10.2991/jsta.d.210129.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 1 05 02 132-148 |
allfieldsGer |
10.2991/jsta.d.210129.001 doi (DE-627)SPR054346525 (SPR)jsta.d.210129.001-e DE-627 ger DE-627 rakwb eng Ali, M. A. verfasserin aut Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2021 Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 Athar, Haseeb aut Enthalten in Journal of Statistical Theory and Applications Paris : Atlantis Press, 2002 20(2021), 1 vom: 05. Feb., Seite 132-148 (DE-627)802538924 (DE-600)2798845-4 2214-1766 nnns volume:20 year:2021 number:1 day:05 month:02 pages:132-148 https://dx.doi.org/10.2991/jsta.d.210129.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 1 05 02 132-148 |
allfieldsSound |
10.2991/jsta.d.210129.001 doi (DE-627)SPR054346525 (SPR)jsta.d.210129.001-e DE-627 ger DE-627 rakwb eng Ali, M. A. verfasserin aut Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2021 Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 Athar, Haseeb aut Enthalten in Journal of Statistical Theory and Applications Paris : Atlantis Press, 2002 20(2021), 1 vom: 05. Feb., Seite 132-148 (DE-627)802538924 (DE-600)2798845-4 2214-1766 nnns volume:20 year:2021 number:1 day:05 month:02 pages:132-148 https://dx.doi.org/10.2991/jsta.d.210129.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2021 1 05 02 132-148 |
language |
English |
source |
Enthalten in Journal of Statistical Theory and Applications 20(2021), 1 vom: 05. Feb., Seite 132-148 volume:20 year:2021 number:1 day:05 month:02 pages:132-148 |
sourceStr |
Enthalten in Journal of Statistical Theory and Applications 20(2021), 1 vom: 05. Feb., Seite 132-148 volume:20 year:2021 number:1 day:05 month:02 pages:132-148 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transmuted map Order Statistics Weibull distribution Beta distribution Hazard function Continuous distributions |
isfreeaccess_bool |
true |
container_title |
Journal of Statistical Theory and Applications |
authorswithroles_txt_mv |
Ali, M. A. @@aut@@ Athar, Haseeb @@aut@@ |
publishDateDaySort_date |
2021-02-05T00:00:00Z |
hierarchy_top_id |
802538924 |
id |
SPR054346525 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054346525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240111s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/jsta.d.210129.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054346525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)jsta.d.210129.001-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Authors 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmuted map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order Statistics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beta distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hazard function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous distributions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Athar, Haseeb</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Statistical Theory and Applications</subfield><subfield code="d">Paris : Atlantis Press, 2002</subfield><subfield code="g">20(2021), 1 vom: 05. Feb., Seite 132-148</subfield><subfield code="w">(DE-627)802538924</subfield><subfield code="w">(DE-600)2798845-4</subfield><subfield code="x">2214-1766</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:132-148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/jsta.d.210129.001</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">132-148</subfield></datafield></record></collection>
|
author |
Ali, M. A. |
spellingShingle |
Ali, M. A. misc Transmuted map misc Order Statistics misc Weibull distribution misc Beta distribution misc Hazard function misc Continuous distributions Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
authorStr |
Ali, M. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)802538924 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2214-1766 |
topic_title |
Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions Transmuted map (dpeaa)DE-He213 Order Statistics (dpeaa)DE-He213 Weibull distribution (dpeaa)DE-He213 Beta distribution (dpeaa)DE-He213 Hazard function (dpeaa)DE-He213 Continuous distributions (dpeaa)DE-He213 |
topic |
misc Transmuted map misc Order Statistics misc Weibull distribution misc Beta distribution misc Hazard function misc Continuous distributions |
topic_unstemmed |
misc Transmuted map misc Order Statistics misc Weibull distribution misc Beta distribution misc Hazard function misc Continuous distributions |
topic_browse |
misc Transmuted map misc Order Statistics misc Weibull distribution misc Beta distribution misc Hazard function misc Continuous distributions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Statistical Theory and Applications |
hierarchy_parent_id |
802538924 |
hierarchy_top_title |
Journal of Statistical Theory and Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)802538924 (DE-600)2798845-4 |
title |
Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
ctrlnum |
(DE-627)SPR054346525 (SPR)jsta.d.210129.001-e |
title_full |
Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
author_sort |
Ali, M. A. |
journal |
Journal of Statistical Theory and Applications |
journalStr |
Journal of Statistical Theory and Applications |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
132 |
author_browse |
Ali, M. A. Athar, Haseeb |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Ali, M. A. |
doi_str_mv |
10.2991/jsta.d.210129.001 |
title_sort |
generalized rank mapped transmuted distribution for generating families of continuous distributions |
title_auth |
Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
abstract |
Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. © The Authors 2021 |
abstractGer |
Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. © The Authors 2021 |
abstract_unstemmed |
Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use. © The Authors 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions |
url |
https://dx.doi.org/10.2991/jsta.d.210129.001 |
remote_bool |
true |
author2 |
Athar, Haseeb |
author2Str |
Athar, Haseeb |
ppnlink |
802538924 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2991/jsta.d.210129.001 |
up_date |
2024-07-04T01:10:17.166Z |
_version_ |
1803608829112352768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054346525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240111064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240111s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/jsta.d.210129.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054346525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)jsta.d.210129.001-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Rank Mapped Transmuted Distribution for Generating Families of Continuous Distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Authors 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree of skewed distribution can explore this generalized transmuted family of distributions for future use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmuted map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order Statistics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beta distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hazard function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous distributions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Athar, Haseeb</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Statistical Theory and Applications</subfield><subfield code="d">Paris : Atlantis Press, 2002</subfield><subfield code="g">20(2021), 1 vom: 05. Feb., Seite 132-148</subfield><subfield code="w">(DE-627)802538924</subfield><subfield code="w">(DE-600)2798845-4</subfield><subfield code="x">2214-1766</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:132-148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/jsta.d.210129.001</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">132-148</subfield></datafield></record></collection>
|
score |
7.4026117 |