Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices
Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while...
Ausführliche Beschreibung
Autor*in: |
Scaffaro, Roberto [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Advanced composites and hybrid materials - [Cham] : Springer International Publishing, 2017, 7(2024), 1 vom: 15. Jan. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2024 ; number:1 ; day:15 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s42114-023-00827-w |
---|
Katalog-ID: |
SPR054399173 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR054399173 | ||
003 | DE-627 | ||
005 | 20240221064712.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240116s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42114-023-00827-w |2 doi | |
035 | |a (DE-627)SPR054399173 | ||
035 | |a (SPR)s42114-023-00827-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Scaffaro, Roberto |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. | ||
650 | 4 | |a Graphene oxide |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon nanotubes (CNTs) |7 (dpeaa)DE-He213 | |
650 | 4 | |a PVDF-HFP |7 (dpeaa)DE-He213 | |
650 | 4 | |a Methylene blue removal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Methylene blue sensing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pressure sensing |7 (dpeaa)DE-He213 | |
700 | 1 | |a Maio, Andrea |4 aut | |
700 | 1 | |a Gammino, Michele |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advanced composites and hybrid materials |d [Cham] : Springer International Publishing, 2017 |g 7(2024), 1 vom: 15. Jan. |w (DE-627)1004720920 |w (DE-600)2911408-1 |x 2522-0136 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2024 |g number:1 |g day:15 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42114-023-00827-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2024 |e 1 |b 15 |c 01 |
author_variant |
r s rs a m am m g mg |
---|---|
matchkey_str |
article:25220136:2024----::lcrsuplmrcaoyrdwtottnigoltnsdopinneetociiyo |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s42114-023-00827-w doi (DE-627)SPR054399173 (SPR)s42114-023-00827-w-e DE-627 ger DE-627 rakwb eng Scaffaro, Roberto verfasserin aut Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 Maio, Andrea aut Gammino, Michele aut Enthalten in Advanced composites and hybrid materials [Cham] : Springer International Publishing, 2017 7(2024), 1 vom: 15. Jan. (DE-627)1004720920 (DE-600)2911408-1 2522-0136 nnns volume:7 year:2024 number:1 day:15 month:01 https://dx.doi.org/10.1007/s42114-023-00827-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2024 1 15 01 |
spelling |
10.1007/s42114-023-00827-w doi (DE-627)SPR054399173 (SPR)s42114-023-00827-w-e DE-627 ger DE-627 rakwb eng Scaffaro, Roberto verfasserin aut Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 Maio, Andrea aut Gammino, Michele aut Enthalten in Advanced composites and hybrid materials [Cham] : Springer International Publishing, 2017 7(2024), 1 vom: 15. Jan. (DE-627)1004720920 (DE-600)2911408-1 2522-0136 nnns volume:7 year:2024 number:1 day:15 month:01 https://dx.doi.org/10.1007/s42114-023-00827-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2024 1 15 01 |
allfields_unstemmed |
10.1007/s42114-023-00827-w doi (DE-627)SPR054399173 (SPR)s42114-023-00827-w-e DE-627 ger DE-627 rakwb eng Scaffaro, Roberto verfasserin aut Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 Maio, Andrea aut Gammino, Michele aut Enthalten in Advanced composites and hybrid materials [Cham] : Springer International Publishing, 2017 7(2024), 1 vom: 15. Jan. (DE-627)1004720920 (DE-600)2911408-1 2522-0136 nnns volume:7 year:2024 number:1 day:15 month:01 https://dx.doi.org/10.1007/s42114-023-00827-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2024 1 15 01 |
allfieldsGer |
10.1007/s42114-023-00827-w doi (DE-627)SPR054399173 (SPR)s42114-023-00827-w-e DE-627 ger DE-627 rakwb eng Scaffaro, Roberto verfasserin aut Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 Maio, Andrea aut Gammino, Michele aut Enthalten in Advanced composites and hybrid materials [Cham] : Springer International Publishing, 2017 7(2024), 1 vom: 15. Jan. (DE-627)1004720920 (DE-600)2911408-1 2522-0136 nnns volume:7 year:2024 number:1 day:15 month:01 https://dx.doi.org/10.1007/s42114-023-00827-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2024 1 15 01 |
allfieldsSound |
10.1007/s42114-023-00827-w doi (DE-627)SPR054399173 (SPR)s42114-023-00827-w-e DE-627 ger DE-627 rakwb eng Scaffaro, Roberto verfasserin aut Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 Maio, Andrea aut Gammino, Michele aut Enthalten in Advanced composites and hybrid materials [Cham] : Springer International Publishing, 2017 7(2024), 1 vom: 15. Jan. (DE-627)1004720920 (DE-600)2911408-1 2522-0136 nnns volume:7 year:2024 number:1 day:15 month:01 https://dx.doi.org/10.1007/s42114-023-00827-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 7 2024 1 15 01 |
language |
English |
source |
Enthalten in Advanced composites and hybrid materials 7(2024), 1 vom: 15. Jan. volume:7 year:2024 number:1 day:15 month:01 |
sourceStr |
Enthalten in Advanced composites and hybrid materials 7(2024), 1 vom: 15. Jan. volume:7 year:2024 number:1 day:15 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graphene oxide Carbon nanotubes (CNTs) PVDF-HFP Methylene blue removal Methylene blue sensing Pressure sensing |
isfreeaccess_bool |
true |
container_title |
Advanced composites and hybrid materials |
authorswithroles_txt_mv |
Scaffaro, Roberto @@aut@@ Maio, Andrea @@aut@@ Gammino, Michele @@aut@@ |
publishDateDaySort_date |
2024-01-15T00:00:00Z |
hierarchy_top_id |
1004720920 |
id |
SPR054399173 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054399173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240221064712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240116s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42114-023-00827-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054399173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42114-023-00827-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scaffaro, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes (CNTs)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PVDF-HFP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue removal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maio, Andrea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gammino, Michele</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced composites and hybrid materials</subfield><subfield code="d">[Cham] : Springer International Publishing, 2017</subfield><subfield code="g">7(2024), 1 vom: 15. Jan.</subfield><subfield code="w">(DE-627)1004720920</subfield><subfield code="w">(DE-600)2911408-1</subfield><subfield code="x">2522-0136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42114-023-00827-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Scaffaro, Roberto |
spellingShingle |
Scaffaro, Roberto misc Graphene oxide misc Carbon nanotubes (CNTs) misc PVDF-HFP misc Methylene blue removal misc Methylene blue sensing misc Pressure sensing Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
authorStr |
Scaffaro, Roberto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1004720920 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2522-0136 |
topic_title |
Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices Graphene oxide (dpeaa)DE-He213 Carbon nanotubes (CNTs) (dpeaa)DE-He213 PVDF-HFP (dpeaa)DE-He213 Methylene blue removal (dpeaa)DE-He213 Methylene blue sensing (dpeaa)DE-He213 Pressure sensing (dpeaa)DE-He213 |
topic |
misc Graphene oxide misc Carbon nanotubes (CNTs) misc PVDF-HFP misc Methylene blue removal misc Methylene blue sensing misc Pressure sensing |
topic_unstemmed |
misc Graphene oxide misc Carbon nanotubes (CNTs) misc PVDF-HFP misc Methylene blue removal misc Methylene blue sensing misc Pressure sensing |
topic_browse |
misc Graphene oxide misc Carbon nanotubes (CNTs) misc PVDF-HFP misc Methylene blue removal misc Methylene blue sensing misc Pressure sensing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advanced composites and hybrid materials |
hierarchy_parent_id |
1004720920 |
hierarchy_top_title |
Advanced composites and hybrid materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1004720920 (DE-600)2911408-1 |
title |
Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
ctrlnum |
(DE-627)SPR054399173 (SPR)s42114-023-00827-w-e |
title_full |
Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
author_sort |
Scaffaro, Roberto |
journal |
Advanced composites and hybrid materials |
journalStr |
Advanced composites and hybrid materials |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Scaffaro, Roberto Maio, Andrea Gammino, Michele |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Scaffaro, Roberto |
doi_str_mv |
10.1007/s42114-023-00827-w |
title_sort |
electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
title_auth |
Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
abstract |
Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. © The Author(s) 2024 |
abstractGer |
Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. © The Author(s) 2024 |
abstract_unstemmed |
Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices |
url |
https://dx.doi.org/10.1007/s42114-023-00827-w |
remote_bool |
true |
author2 |
Maio, Andrea Gammino, Michele |
author2Str |
Maio, Andrea Gammino, Michele |
ppnlink |
1004720920 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42114-023-00827-w |
up_date |
2024-07-04T01:25:50.191Z |
_version_ |
1803609807462072320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054399173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240221064712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240116s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42114-023-00827-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054399173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42114-023-00827-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scaffaro, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrospun polymeric nanohybrids with outstanding pollutants adsorption and electroactivity for water treatment and sensing devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphene oxide (GO) and carbon nanotubes (CNTs) were loaded at different mutual ratios into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) matrix and electrospun to construct mats that were assessed as smart sorbents for decontaminating water from methylene blue (MB) pollutant, while ensuring the additional possibility of detecting the dye amounts. The results revealed that sorption capacity enhances upon increasing GO content, which is beneficial to wettability and active area. Equilibrium adsorption of these materials is precisely predicted by the Langmuir isotherm model and the maximum capacities herein achieved, ranging from 120 to 555 mg/g depending on the formulation, are higher than those reported for similar systems. The evolution of the structure and properties of such materials as a function of dye adsorption was studied. The results reveal that MB molecules prompted the increase of electrical conductivity of the samples in a dose-dependent manner. Mats containing solely CNTs, while displaying the worst sorption performance, showed the highest electrical performances, displaying interesting changes in their electrical response as a function of the dye amount adsorbed, with a linear response and high sensitivity (309.4 µS $ cm^{−1} $ $ mg^{−1} $) in the range 0–235 µg of dye adsorbed. Beyond the possibility to monitor the presence of small amounts of MB in contaminated water and the saturation state of sorbents, this feature could even be exploited to transform waste sorbents into high-added value products, including flexible sensors for detecting low values of pressure, human motion, and so on. Graphical Abstract Multifunctional materials for dye absorption and detection, pressure sensing, fabricated by integrating GO and CNTs into PVDF-HFP matrix via electrospinning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon nanotubes (CNTs)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PVDF-HFP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue removal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene blue sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure sensing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maio, Andrea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gammino, Michele</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced composites and hybrid materials</subfield><subfield code="d">[Cham] : Springer International Publishing, 2017</subfield><subfield code="g">7(2024), 1 vom: 15. Jan.</subfield><subfield code="w">(DE-627)1004720920</subfield><subfield code="w">(DE-600)2911408-1</subfield><subfield code="x">2522-0136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42114-023-00827-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401124 |