The prediction of the ultimate base shear of BRB frames under push-over using ensemble methods and artificial neural networks

Abstract This study aims to develop machine learning (ML) models to predict the base shear of buckling restrained braced frames (BRBF). Four machine learning (ML) algorithms [random forest, artificial neural network (ANN), XGBoost, and Adaboost] were used to conduct this task. The training data were...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Al-Ghabawi, Humam Hussein Mohammed [verfasserIn]

Khattab, Mustafa M.

Zahid, Idrees A.

Al-Oubaidi, Bilal

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

BRBF

Machine learning

Push-over analysis

OpenSeesPy

Base shear

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Asian journal of civil engineering - Cham : Springer International Publishing, 2017, 25(2023), 2 vom: 05. Aug., Seite 1467-1485

Übergeordnetes Werk:

volume:25 ; year:2023 ; number:2 ; day:05 ; month:08 ; pages:1467-1485

Links:

Volltext

DOI / URN:

10.1007/s42107-023-00855-3

Katalog-ID:

SPR054414032

Nicht das Richtige dabei?

Schreiben Sie uns!