Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans
Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa...
Ausführliche Beschreibung
Autor*in: |
Huggins, Lucas G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC microbiology - London : BioMed Central, 2001, 24(2024), 1 vom: 20. Jan. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:20 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s12866-023-03159-3 |
---|
Katalog-ID: |
SPR054462525 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054462525 | ||
003 | DE-627 | ||
005 | 20240121064629.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240121s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12866-023-03159-3 |2 doi | |
035 | |a (DE-627)SPR054462525 | ||
035 | |a (SPR)s12866-023-03159-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Huggins, Lucas G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. | ||
650 | 4 | |a Next-generation sequencing (NGS) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanopore |7 (dpeaa)DE-He213 | |
650 | 4 | |a MinION™ |7 (dpeaa)DE-He213 | |
650 | 4 | |a Filarioid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nemabiome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vector-borne Disease (VBD) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Atapattu, Ushani |4 aut | |
700 | 1 | |a Young, Neil D. |4 aut | |
700 | 1 | |a Traub, Rebecca J. |4 aut | |
700 | 1 | |a Colella, Vito |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC microbiology |d London : BioMed Central, 2001 |g 24(2024), 1 vom: 20. Jan. |w (DE-627)326644997 |w (DE-600)2041505-9 |x 1471-2180 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:20 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12866-023-03159-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 20 |c 01 |
author_variant |
l g h lg lgh u a ua n d y nd ndy r j t rj rjt v c vc |
---|---|
matchkey_str |
article:14712180:2024----::eeomnadaiainflnramtbroigltomoteeetooflrawr |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s12866-023-03159-3 doi (DE-627)SPR054462525 (SPR)s12866-023-03159-3-e DE-627 ger DE-627 rakwb eng Huggins, Lucas G. verfasserin aut Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 Atapattu, Ushani aut Young, Neil D. aut Traub, Rebecca J. aut Colella, Vito aut Enthalten in BMC microbiology London : BioMed Central, 2001 24(2024), 1 vom: 20. Jan. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:24 year:2024 number:1 day:20 month:01 https://dx.doi.org/10.1186/s12866-023-03159-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 20 01 |
spelling |
10.1186/s12866-023-03159-3 doi (DE-627)SPR054462525 (SPR)s12866-023-03159-3-e DE-627 ger DE-627 rakwb eng Huggins, Lucas G. verfasserin aut Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 Atapattu, Ushani aut Young, Neil D. aut Traub, Rebecca J. aut Colella, Vito aut Enthalten in BMC microbiology London : BioMed Central, 2001 24(2024), 1 vom: 20. Jan. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:24 year:2024 number:1 day:20 month:01 https://dx.doi.org/10.1186/s12866-023-03159-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 20 01 |
allfields_unstemmed |
10.1186/s12866-023-03159-3 doi (DE-627)SPR054462525 (SPR)s12866-023-03159-3-e DE-627 ger DE-627 rakwb eng Huggins, Lucas G. verfasserin aut Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 Atapattu, Ushani aut Young, Neil D. aut Traub, Rebecca J. aut Colella, Vito aut Enthalten in BMC microbiology London : BioMed Central, 2001 24(2024), 1 vom: 20. Jan. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:24 year:2024 number:1 day:20 month:01 https://dx.doi.org/10.1186/s12866-023-03159-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 20 01 |
allfieldsGer |
10.1186/s12866-023-03159-3 doi (DE-627)SPR054462525 (SPR)s12866-023-03159-3-e DE-627 ger DE-627 rakwb eng Huggins, Lucas G. verfasserin aut Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 Atapattu, Ushani aut Young, Neil D. aut Traub, Rebecca J. aut Colella, Vito aut Enthalten in BMC microbiology London : BioMed Central, 2001 24(2024), 1 vom: 20. Jan. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:24 year:2024 number:1 day:20 month:01 https://dx.doi.org/10.1186/s12866-023-03159-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 20 01 |
allfieldsSound |
10.1186/s12866-023-03159-3 doi (DE-627)SPR054462525 (SPR)s12866-023-03159-3-e DE-627 ger DE-627 rakwb eng Huggins, Lucas G. verfasserin aut Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 Atapattu, Ushani aut Young, Neil D. aut Traub, Rebecca J. aut Colella, Vito aut Enthalten in BMC microbiology London : BioMed Central, 2001 24(2024), 1 vom: 20. Jan. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:24 year:2024 number:1 day:20 month:01 https://dx.doi.org/10.1186/s12866-023-03159-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 20 01 |
language |
English |
source |
Enthalten in BMC microbiology 24(2024), 1 vom: 20. Jan. volume:24 year:2024 number:1 day:20 month:01 |
sourceStr |
Enthalten in BMC microbiology 24(2024), 1 vom: 20. Jan. volume:24 year:2024 number:1 day:20 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Next-generation sequencing (NGS) Nanopore MinION™ Filarioid Nemabiome Vector-borne Disease (VBD) |
isfreeaccess_bool |
true |
container_title |
BMC microbiology |
authorswithroles_txt_mv |
Huggins, Lucas G. @@aut@@ Atapattu, Ushani @@aut@@ Young, Neil D. @@aut@@ Traub, Rebecca J. @@aut@@ Colella, Vito @@aut@@ |
publishDateDaySort_date |
2024-01-20T00:00:00Z |
hierarchy_top_id |
326644997 |
id |
SPR054462525 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054462525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121064629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12866-023-03159-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054462525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12866-023-03159-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huggins, Lucas G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Next-generation sequencing (NGS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopore</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MinION™</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filarioid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nemabiome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector-borne Disease (VBD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Atapattu, Ushani</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Young, Neil D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Traub, Rebecca J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colella, Vito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC microbiology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 20. Jan.</subfield><subfield code="w">(DE-627)326644997</subfield><subfield code="w">(DE-600)2041505-9</subfield><subfield code="x">1471-2180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12866-023-03159-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Huggins, Lucas G. |
spellingShingle |
Huggins, Lucas G. misc Next-generation sequencing (NGS) misc Nanopore misc MinION™ misc Filarioid misc Nemabiome misc Vector-borne Disease (VBD) Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
authorStr |
Huggins, Lucas G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644997 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2180 |
topic_title |
Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans Next-generation sequencing (NGS) (dpeaa)DE-He213 Nanopore (dpeaa)DE-He213 MinION™ (dpeaa)DE-He213 Filarioid (dpeaa)DE-He213 Nemabiome (dpeaa)DE-He213 Vector-borne Disease (VBD) (dpeaa)DE-He213 |
topic |
misc Next-generation sequencing (NGS) misc Nanopore misc MinION™ misc Filarioid misc Nemabiome misc Vector-borne Disease (VBD) |
topic_unstemmed |
misc Next-generation sequencing (NGS) misc Nanopore misc MinION™ misc Filarioid misc Nemabiome misc Vector-borne Disease (VBD) |
topic_browse |
misc Next-generation sequencing (NGS) misc Nanopore misc MinION™ misc Filarioid misc Nemabiome misc Vector-borne Disease (VBD) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC microbiology |
hierarchy_parent_id |
326644997 |
hierarchy_top_title |
BMC microbiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644997 (DE-600)2041505-9 |
title |
Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
ctrlnum |
(DE-627)SPR054462525 (SPR)s12866-023-03159-3-e |
title_full |
Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
author_sort |
Huggins, Lucas G. |
journal |
BMC microbiology |
journalStr |
BMC microbiology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Huggins, Lucas G. Atapattu, Ushani Young, Neil D. Traub, Rebecca J. Colella, Vito |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Huggins, Lucas G. |
doi_str_mv |
10.1186/s12866-023-03159-3 |
title_sort |
development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
title_auth |
Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
abstract |
Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. © The Author(s) 2024 |
abstractGer |
Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. © The Author(s) 2024 |
abstract_unstemmed |
Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans |
url |
https://dx.doi.org/10.1186/s12866-023-03159-3 |
remote_bool |
true |
author2 |
Atapattu, Ushani Young, Neil D. Traub, Rebecca J. Colella, Vito |
author2Str |
Atapattu, Ushani Young, Neil D. Traub, Rebecca J. Colella, Vito |
ppnlink |
326644997 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12866-023-03159-3 |
up_date |
2024-07-04T01:44:01.779Z |
_version_ |
1803610952077148160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054462525</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240121064629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240121s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12866-023-03159-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054462525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12866-023-03159-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huggins, Lucas G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and validation of a long-read metabarcoding platform for the detection of filarial worm pathogens of animals and humans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Filarial worms are important vector-borne pathogens of a large range of animal hosts, including humans, and are responsible for numerous debilitating neglected tropical diseases such as, lymphatic filariasis caused by Wuchereria bancrofti and Brugia spp., as well as loiasis caused by Loa loa. Moreover, some emerging or difficult-to-eliminate filarioid pathogens are zoonotic using animals like canines as reservoir hosts, for example Dirofilaria sp. ‘hongkongensis’. Diagnosis of filariasis through commonly available methods, like microscopy, can be challenging as microfilaremia may wane below the limit of detection. In contrast, conventional PCR methods are more sensitive and specific but may show limited ability to detect coinfections as well as emerging and/or novel pathogens. Use of deep-sequencing technologies obviate these challenges, providing sensitive detection of entire parasite communities, whilst also being better suited for the characterisation of rare or novel pathogens. Therefore, we developed a novel long-read metabarcoding assay for deep-sequencing the filarial nematode cytochrome c oxidase subunit I gene on Oxford Nanopore Technologies’ (ONT) MinION™ sequencer. We assessed the overall performance of our assay using kappa statistics to compare it to commonly used diagnostic methods for filarial worm detection, such as conventional PCR (cPCR) with Sanger sequencing and the microscopy-based modified Knott’s test (MKT). Results We confirmed our metabarcoding assay can characterise filarial parasites from a diverse range of genera, including, Breinlia, Brugia, Cercopithifilaria, Dipetalonema, Dirofilaria, Onchocerca, Setaria, Stephanofilaria and Wuchereria. We demonstrated proof-of-concept for this assay by using blood samples from Sri Lankan dogs, whereby we identified infections with the filarioids Acanthocheilonema reconditum, Brugia sp. Sri Lanka genotype and zoonotic Dirofilaria sp. ‘hongkongensis’. When compared to traditionally used diagnostics, such as the MKT and cPCR with Sanger sequencing, we identified an additional filarioid species and over 15% more mono- and coinfections. Conclusions Our developed metabarcoding assay may show broad applicability for the metabarcoding and diagnosis of the full spectrum of filarioids from a wide range of animal hosts, including mammals and vectors, whilst the utilisation of ONT’ small and portable MinION™ means that such methods could be deployed for field use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Next-generation sequencing (NGS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanopore</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MinION™</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filarioid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nemabiome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector-borne Disease (VBD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Atapattu, Ushani</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Young, Neil D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Traub, Rebecca J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colella, Vito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC microbiology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 20. Jan.</subfield><subfield code="w">(DE-627)326644997</subfield><subfield code="w">(DE-600)2041505-9</subfield><subfield code="x">1471-2180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12866-023-03159-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.402356 |