ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set
Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed...
Ausführliche Beschreibung
Autor*in: |
Günther, Sebastian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Energy informatics - Cham : Springer International Publishing, 2018, 7(2024), 1 vom: 22. Jan. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2024 ; number:1 ; day:22 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s42162-024-00304-8 |
---|
Katalog-ID: |
SPR054482488 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054482488 | ||
003 | DE-627 | ||
005 | 20240123064832.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240123s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s42162-024-00304-8 |2 doi | |
035 | |a (DE-627)SPR054482488 | ||
035 | |a (SPR)s42162-024-00304-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Günther, Sebastian |e verfasserin |4 aut | |
245 | 1 | 0 | |a ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. | ||
650 | 4 | |a Time series |7 (dpeaa)DE-He213 | |
650 | 4 | |a Time series analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Time series features |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feature engineering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Load profiles |7 (dpeaa)DE-He213 | |
650 | 4 | |a Energy systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Machine learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Statistical analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Systems modeling |7 (dpeaa)DE-He213 | |
700 | 1 | |a Brandt, Jonathan |4 aut | |
700 | 1 | |a Bensmann, Astrid |4 aut | |
700 | 1 | |a Hanke-Rauschenbach, Richard |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy informatics |d Cham : Springer International Publishing, 2018 |g 7(2024), 1 vom: 22. Jan. |w (DE-627)1031001387 |w (DE-600)2942905-5 |x 2520-8942 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2024 |g number:1 |g day:22 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s42162-024-00304-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2024 |e 1 |b 22 |c 01 |
author_variant |
s g sg j b jb a b ab r h r rhr |
---|---|
matchkey_str |
article:25208942:2024----::sseegssetmsresiedcutrdplctoidpneteiri |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s42162-024-00304-8 doi (DE-627)SPR054482488 (SPR)s42162-024-00304-8-e DE-627 ger DE-627 rakwb eng Günther, Sebastian verfasserin aut ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 Brandt, Jonathan aut Bensmann, Astrid aut Hanke-Rauschenbach, Richard aut Enthalten in Energy informatics Cham : Springer International Publishing, 2018 7(2024), 1 vom: 22. Jan. (DE-627)1031001387 (DE-600)2942905-5 2520-8942 nnns volume:7 year:2024 number:1 day:22 month:01 https://dx.doi.org/10.1186/s42162-024-00304-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 22 01 |
spelling |
10.1186/s42162-024-00304-8 doi (DE-627)SPR054482488 (SPR)s42162-024-00304-8-e DE-627 ger DE-627 rakwb eng Günther, Sebastian verfasserin aut ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 Brandt, Jonathan aut Bensmann, Astrid aut Hanke-Rauschenbach, Richard aut Enthalten in Energy informatics Cham : Springer International Publishing, 2018 7(2024), 1 vom: 22. Jan. (DE-627)1031001387 (DE-600)2942905-5 2520-8942 nnns volume:7 year:2024 number:1 day:22 month:01 https://dx.doi.org/10.1186/s42162-024-00304-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 22 01 |
allfields_unstemmed |
10.1186/s42162-024-00304-8 doi (DE-627)SPR054482488 (SPR)s42162-024-00304-8-e DE-627 ger DE-627 rakwb eng Günther, Sebastian verfasserin aut ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 Brandt, Jonathan aut Bensmann, Astrid aut Hanke-Rauschenbach, Richard aut Enthalten in Energy informatics Cham : Springer International Publishing, 2018 7(2024), 1 vom: 22. Jan. (DE-627)1031001387 (DE-600)2942905-5 2520-8942 nnns volume:7 year:2024 number:1 day:22 month:01 https://dx.doi.org/10.1186/s42162-024-00304-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 22 01 |
allfieldsGer |
10.1186/s42162-024-00304-8 doi (DE-627)SPR054482488 (SPR)s42162-024-00304-8-e DE-627 ger DE-627 rakwb eng Günther, Sebastian verfasserin aut ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 Brandt, Jonathan aut Bensmann, Astrid aut Hanke-Rauschenbach, Richard aut Enthalten in Energy informatics Cham : Springer International Publishing, 2018 7(2024), 1 vom: 22. Jan. (DE-627)1031001387 (DE-600)2942905-5 2520-8942 nnns volume:7 year:2024 number:1 day:22 month:01 https://dx.doi.org/10.1186/s42162-024-00304-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 22 01 |
allfieldsSound |
10.1186/s42162-024-00304-8 doi (DE-627)SPR054482488 (SPR)s42162-024-00304-8-e DE-627 ger DE-627 rakwb eng Günther, Sebastian verfasserin aut ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 Brandt, Jonathan aut Bensmann, Astrid aut Hanke-Rauschenbach, Richard aut Enthalten in Energy informatics Cham : Springer International Publishing, 2018 7(2024), 1 vom: 22. Jan. (DE-627)1031001387 (DE-600)2942905-5 2520-8942 nnns volume:7 year:2024 number:1 day:22 month:01 https://dx.doi.org/10.1186/s42162-024-00304-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2024 1 22 01 |
language |
English |
source |
Enthalten in Energy informatics 7(2024), 1 vom: 22. Jan. volume:7 year:2024 number:1 day:22 month:01 |
sourceStr |
Enthalten in Energy informatics 7(2024), 1 vom: 22. Jan. volume:7 year:2024 number:1 day:22 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Time series Time series analysis Time series features Feature engineering Load profiles Energy systems Machine learning Statistical analysis Systems modeling |
isfreeaccess_bool |
true |
container_title |
Energy informatics |
authorswithroles_txt_mv |
Günther, Sebastian @@aut@@ Brandt, Jonathan @@aut@@ Bensmann, Astrid @@aut@@ Hanke-Rauschenbach, Richard @@aut@@ |
publishDateDaySort_date |
2024-01-22T00:00:00Z |
hierarchy_top_id |
1031001387 |
id |
SPR054482488 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054482488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240123064832.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240123s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-024-00304-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054482488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42162-024-00304-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Günther, Sebastian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series features</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load profiles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brandt, Jonathan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bensmann, Astrid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanke-Rauschenbach, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy informatics</subfield><subfield code="d">Cham : Springer International Publishing, 2018</subfield><subfield code="g">7(2024), 1 vom: 22. Jan.</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="w">(DE-600)2942905-5</subfield><subfield code="x">2520-8942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s42162-024-00304-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Günther, Sebastian |
spellingShingle |
Günther, Sebastian misc Time series misc Time series analysis misc Time series features misc Feature engineering misc Load profiles misc Energy systems misc Machine learning misc Statistical analysis misc Systems modeling ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
authorStr |
Günther, Sebastian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1031001387 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2520-8942 |
topic_title |
ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set Time series (dpeaa)DE-He213 Time series analysis (dpeaa)DE-He213 Time series features (dpeaa)DE-He213 Feature engineering (dpeaa)DE-He213 Load profiles (dpeaa)DE-He213 Energy systems (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Statistical analysis (dpeaa)DE-He213 Systems modeling (dpeaa)DE-He213 |
topic |
misc Time series misc Time series analysis misc Time series features misc Feature engineering misc Load profiles misc Energy systems misc Machine learning misc Statistical analysis misc Systems modeling |
topic_unstemmed |
misc Time series misc Time series analysis misc Time series features misc Feature engineering misc Load profiles misc Energy systems misc Machine learning misc Statistical analysis misc Systems modeling |
topic_browse |
misc Time series misc Time series analysis misc Time series features misc Feature engineering misc Load profiles misc Energy systems misc Machine learning misc Statistical analysis misc Systems modeling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy informatics |
hierarchy_parent_id |
1031001387 |
hierarchy_top_title |
Energy informatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1031001387 (DE-600)2942905-5 |
title |
ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
ctrlnum |
(DE-627)SPR054482488 (SPR)s42162-024-00304-8-e |
title_full |
ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
author_sort |
Günther, Sebastian |
journal |
Energy informatics |
journalStr |
Energy informatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Günther, Sebastian Brandt, Jonathan Bensmann, Astrid Hanke-Rauschenbach, Richard |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Günther, Sebastian |
doi_str_mv |
10.1186/s42162-024-00304-8 |
title_sort |
estss—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
title_auth |
ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
abstract |
Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. © The Author(s) 2024 |
abstractGer |
Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. © The Author(s) 2024 |
abstract_unstemmed |
Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set |
url |
https://dx.doi.org/10.1186/s42162-024-00304-8 |
remote_bool |
true |
author2 |
Brandt, Jonathan Bensmann, Astrid Hanke-Rauschenbach, Richard |
author2Str |
Brandt, Jonathan Bensmann, Astrid Hanke-Rauschenbach, Richard |
ppnlink |
1031001387 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s42162-024-00304-8 |
up_date |
2024-07-04T01:49:50.619Z |
_version_ |
1803611317859254272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054482488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240123064832.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240123s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-024-00304-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054482488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42162-024-00304-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Günther, Sebastian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ESTSS—energy system time series suite: a declustered, application-independent, semi-artificial load profile benchmark set</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper introduces an univariate application-independent set of load profiles or time series derived from real-world energy system data. The generation involved a two-step process: manifolding the initial dataset through signal processors to increase diversity and heterogeneity, followed by a declustering process that removes data redundancy. The study employed common feature engineering and machine learning techniques: the time series are transformed into a normalized feature space, followed by a dimensionality reduction via hierarchical clustering, and optimization. The resulting dataset is uniformly distributed across multiple feature space dimensions while retaining typical time and frequency domain characteristics inherent in energy system time series. This data serves various purposes, including algorithm testing, uncovering functional relationships between time series features and system performance, and training machine learning models. Two case studies demonstrate the claims: one focused on the suitability of hybrid energy storage systems and the other on quantifying the onsite hydrogen supply cost in green hydrogen production sites. The declustering algorithm, although a bys study, shows promise for further scientific exploration. The data and source code are openly accessible, providing a robust platform for future comparative studies. This work also offers smaller subsets for computationally intensive research. Data and source code can be found at https://github.com/s-guenther/estss and https://zenodo.org/records/10213145.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series features</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature engineering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load profiles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brandt, Jonathan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bensmann, Astrid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanke-Rauschenbach, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy informatics</subfield><subfield code="d">Cham : Springer International Publishing, 2018</subfield><subfield code="g">7(2024), 1 vom: 22. Jan.</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="w">(DE-600)2942905-5</subfield><subfield code="x">2520-8942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s42162-024-00304-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401189 |