Wave attenuation in 1-D viscoelastic periodic structures with thermal effects
Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of e...
Ausführliche Beschreibung
Autor*in: |
Oliveira, V. B. S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Brazilian Society of Mechanical Sciences and Engineering - Berlin : Springer, 2003, 46(2024), 2 vom: 23. Jan. |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2024 ; number:2 ; day:23 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s40430-023-04624-w |
---|
Katalog-ID: |
SPR054497639 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR054497639 | ||
003 | DE-627 | ||
005 | 20240210064658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240124s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40430-023-04624-w |2 doi | |
035 | |a (DE-627)SPR054497639 | ||
035 | |a (SPR)s40430-023-04624-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Oliveira, V. B. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. | ||
650 | 4 | |a Evanescent wave modes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temperature variation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wave manipulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Viscoelasticity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Extended plane wave expansion |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sandes Filho, C. G. |4 aut | |
700 | 1 | |a Dos Santos, J. M. C. |4 aut | |
700 | 1 | |a Miranda, E. J. P. |0 (orcid)0000-0003-1100-9169 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Brazilian Society of Mechanical Sciences and Engineering |d Berlin : Springer, 2003 |g 46(2024), 2 vom: 23. Jan. |w (DE-627)387477950 |w (DE-600)2145288-X |x 1806-3691 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2024 |g number:2 |g day:23 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40430-023-04624-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 46 |j 2024 |e 2 |b 23 |c 01 |
author_variant |
v b s o vbs vbso f c g s fcg fcgs s j m c d sjmc sjmcd e j p m ejp ejpm |
---|---|
matchkey_str |
article:18063691:2024----::aeteutoi1vsolsiproisrcue |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s40430-023-04624-w doi (DE-627)SPR054497639 (SPR)s40430-023-04624-w-e DE-627 ger DE-627 rakwb eng Oliveira, V. B. S. verfasserin aut Wave attenuation in 1-D viscoelastic periodic structures with thermal effects 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 Sandes Filho, C. G. aut Dos Santos, J. M. C. aut Miranda, E. J. P. (orcid)0000-0003-1100-9169 aut Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering Berlin : Springer, 2003 46(2024), 2 vom: 23. Jan. (DE-627)387477950 (DE-600)2145288-X 1806-3691 nnns volume:46 year:2024 number:2 day:23 month:01 https://dx.doi.org/10.1007/s40430-023-04624-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2024 2 23 01 |
spelling |
10.1007/s40430-023-04624-w doi (DE-627)SPR054497639 (SPR)s40430-023-04624-w-e DE-627 ger DE-627 rakwb eng Oliveira, V. B. S. verfasserin aut Wave attenuation in 1-D viscoelastic periodic structures with thermal effects 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 Sandes Filho, C. G. aut Dos Santos, J. M. C. aut Miranda, E. J. P. (orcid)0000-0003-1100-9169 aut Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering Berlin : Springer, 2003 46(2024), 2 vom: 23. Jan. (DE-627)387477950 (DE-600)2145288-X 1806-3691 nnns volume:46 year:2024 number:2 day:23 month:01 https://dx.doi.org/10.1007/s40430-023-04624-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2024 2 23 01 |
allfields_unstemmed |
10.1007/s40430-023-04624-w doi (DE-627)SPR054497639 (SPR)s40430-023-04624-w-e DE-627 ger DE-627 rakwb eng Oliveira, V. B. S. verfasserin aut Wave attenuation in 1-D viscoelastic periodic structures with thermal effects 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 Sandes Filho, C. G. aut Dos Santos, J. M. C. aut Miranda, E. J. P. (orcid)0000-0003-1100-9169 aut Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering Berlin : Springer, 2003 46(2024), 2 vom: 23. Jan. (DE-627)387477950 (DE-600)2145288-X 1806-3691 nnns volume:46 year:2024 number:2 day:23 month:01 https://dx.doi.org/10.1007/s40430-023-04624-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2024 2 23 01 |
allfieldsGer |
10.1007/s40430-023-04624-w doi (DE-627)SPR054497639 (SPR)s40430-023-04624-w-e DE-627 ger DE-627 rakwb eng Oliveira, V. B. S. verfasserin aut Wave attenuation in 1-D viscoelastic periodic structures with thermal effects 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 Sandes Filho, C. G. aut Dos Santos, J. M. C. aut Miranda, E. J. P. (orcid)0000-0003-1100-9169 aut Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering Berlin : Springer, 2003 46(2024), 2 vom: 23. Jan. (DE-627)387477950 (DE-600)2145288-X 1806-3691 nnns volume:46 year:2024 number:2 day:23 month:01 https://dx.doi.org/10.1007/s40430-023-04624-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2024 2 23 01 |
allfieldsSound |
10.1007/s40430-023-04624-w doi (DE-627)SPR054497639 (SPR)s40430-023-04624-w-e DE-627 ger DE-627 rakwb eng Oliveira, V. B. S. verfasserin aut Wave attenuation in 1-D viscoelastic periodic structures with thermal effects 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 Sandes Filho, C. G. aut Dos Santos, J. M. C. aut Miranda, E. J. P. (orcid)0000-0003-1100-9169 aut Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering Berlin : Springer, 2003 46(2024), 2 vom: 23. Jan. (DE-627)387477950 (DE-600)2145288-X 1806-3691 nnns volume:46 year:2024 number:2 day:23 month:01 https://dx.doi.org/10.1007/s40430-023-04624-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 46 2024 2 23 01 |
language |
English |
source |
Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering 46(2024), 2 vom: 23. Jan. volume:46 year:2024 number:2 day:23 month:01 |
sourceStr |
Enthalten in Journal of the Brazilian Society of Mechanical Sciences and Engineering 46(2024), 2 vom: 23. Jan. volume:46 year:2024 number:2 day:23 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Evanescent wave modes Temperature variation Wave manipulation Viscoelasticity Extended plane wave expansion |
isfreeaccess_bool |
false |
container_title |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
authorswithroles_txt_mv |
Oliveira, V. B. S. @@aut@@ Sandes Filho, C. G. @@aut@@ Dos Santos, J. M. C. @@aut@@ Miranda, E. J. P. @@aut@@ |
publishDateDaySort_date |
2024-01-23T00:00:00Z |
hierarchy_top_id |
387477950 |
id |
SPR054497639 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054497639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240210064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240124s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40430-023-04624-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054497639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40430-023-04624-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oliveira, V. B. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave attenuation in 1-D viscoelastic periodic structures with thermal effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evanescent wave modes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave manipulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended plane wave expansion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandes Filho, C. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dos Santos, J. M. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, E. J. P.</subfield><subfield code="0">(orcid)0000-0003-1100-9169</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Brazilian Society of Mechanical Sciences and Engineering</subfield><subfield code="d">Berlin : Springer, 2003</subfield><subfield code="g">46(2024), 2 vom: 23. Jan.</subfield><subfield code="w">(DE-627)387477950</subfield><subfield code="w">(DE-600)2145288-X</subfield><subfield code="x">1806-3691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40430-023-04624-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Oliveira, V. B. S. |
spellingShingle |
Oliveira, V. B. S. misc Evanescent wave modes misc Temperature variation misc Wave manipulation misc Viscoelasticity misc Extended plane wave expansion Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
authorStr |
Oliveira, V. B. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)387477950 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1806-3691 |
topic_title |
Wave attenuation in 1-D viscoelastic periodic structures with thermal effects Evanescent wave modes (dpeaa)DE-He213 Temperature variation (dpeaa)DE-He213 Wave manipulation (dpeaa)DE-He213 Viscoelasticity (dpeaa)DE-He213 Extended plane wave expansion (dpeaa)DE-He213 |
topic |
misc Evanescent wave modes misc Temperature variation misc Wave manipulation misc Viscoelasticity misc Extended plane wave expansion |
topic_unstemmed |
misc Evanescent wave modes misc Temperature variation misc Wave manipulation misc Viscoelasticity misc Extended plane wave expansion |
topic_browse |
misc Evanescent wave modes misc Temperature variation misc Wave manipulation misc Viscoelasticity misc Extended plane wave expansion |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
hierarchy_parent_id |
387477950 |
hierarchy_top_title |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)387477950 (DE-600)2145288-X |
title |
Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
ctrlnum |
(DE-627)SPR054497639 (SPR)s40430-023-04624-w-e |
title_full |
Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
author_sort |
Oliveira, V. B. S. |
journal |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
journalStr |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Oliveira, V. B. S. Sandes Filho, C. G. Dos Santos, J. M. C. Miranda, E. J. P. |
container_volume |
46 |
format_se |
Elektronische Aufsätze |
author-letter |
Oliveira, V. B. S. |
doi_str_mv |
10.1007/s40430-023-04624-w |
normlink |
(ORCID)0000-0003-1100-9169 |
normlink_prefix_str_mv |
(orcid)0000-0003-1100-9169 |
title_sort |
wave attenuation in 1-d viscoelastic periodic structures with thermal effects |
title_auth |
Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
abstract |
Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects. © The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Wave attenuation in 1-D viscoelastic periodic structures with thermal effects |
url |
https://dx.doi.org/10.1007/s40430-023-04624-w |
remote_bool |
true |
author2 |
Sandes Filho, C. G. Dos Santos, J. M. C. Miranda, E. J. P. |
author2Str |
Sandes Filho, C. G. Dos Santos, J. M. C. Miranda, E. J. P. |
ppnlink |
387477950 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40430-023-04624-w |
up_date |
2024-07-04T01:54:02.895Z |
_version_ |
1803611582389813248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054497639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240210064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240124s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40430-023-04624-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054497639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40430-023-04624-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oliveira, V. B. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave attenuation in 1-D viscoelastic periodic structures with thermal effects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of temperature on the unit cell wave attenuation of 1-D viscoelastic periodic structures is important for the design of phononic structures and mechanical metamaterials with desirable properties, considering the damping provided by viscoelasticity. However, the dispersion of evanescent waves in 1-D viscoelastic phononic structures (VPnSs) with thermal effects has not been reported yet. In this study, it is investigated the complex dispersion diagram of 1-D VPnSs considering an isotropic solid (i.e., bulk waves, 3-D model, in plane strain condition) and the standard linear solid model for the viscoelastic effect. The unit cell of the VPnS is composed by steel (elastic material) and epoxy (viscoelastic material). The thermal effect is included in terms of the Young’s modulus (E) with a temperature (T) dependence (i.e.,E(T)) for epoxy. It is supposed that the unit cell has a uniform temperature along its dimensions, thus there is no heat flux. The extended plane wave expansion, %$k(\omega ,T)%$ approach, where %$\omega%$ is the frequency and k is the wave number, is derived to obtain the propagating and evanescent modes of the VPnSs for each value of temperature. The temperature influences significantly the unit cell wave attenuation zones and also the evanescent wave modes. Before the glass transition temperature of the epoxy, the wave modes are shifted for lower frequencies, the attenuation bands are decreased, and the unit cell wave attenuation increases with the rise of temperature. Near the glass transition temperature of the epoxy, the wave dispersion behaviour, depending on the temperature, is very different, whereas after the glass transition temperature of epoxy, the wave dispersion behaviour is close. The relevant results can be used for the wave attenuation design of viscoelastic periodic structures with thermal effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evanescent wave modes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave manipulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extended plane wave expansion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandes Filho, C. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dos Santos, J. M. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, E. J. P.</subfield><subfield code="0">(orcid)0000-0003-1100-9169</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Brazilian Society of Mechanical Sciences and Engineering</subfield><subfield code="d">Berlin : Springer, 2003</subfield><subfield code="g">46(2024), 2 vom: 23. Jan.</subfield><subfield code="w">(DE-627)387477950</subfield><subfield code="w">(DE-600)2145288-X</subfield><subfield code="x">1806-3691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40430-023-04624-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.401634 |