Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review
Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associ...
Ausführliche Beschreibung
Autor*in: |
Hanzelka, Miroslav [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Surveys in geophysics - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972, 45(2023), 1 vom: 01. Juni, Seite 1-54 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2023 ; number:1 ; day:01 ; month:06 ; pages:1-54 |
Links: |
---|
DOI / URN: |
10.1007/s10712-023-09792-x |
---|
Katalog-ID: |
SPR05454386X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05454386X | ||
003 | DE-627 | ||
005 | 20240128070227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240128s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10712-023-09792-x |2 doi | |
035 | |a (DE-627)SPR05454386X | ||
035 | |a (SPR)s10712-023-09792-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Hanzelka, Miroslav |e verfasserin |0 (orcid)0000-0001-9716-5263 |4 aut | |
245 | 1 | 0 | |a Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. | ||
650 | 4 | |a Chorus emission |7 (dpeaa)DE-He213 | |
650 | 4 | |a Whistler mode |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nonlinear growth |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wave–particle interactions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Resonant current |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cyclotron resonance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sideband instability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Backwards-wave oscillator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Space plasma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plasma waves |7 (dpeaa)DE-He213 | |
700 | 1 | |a Santolík, Ondřej |0 (orcid)0000-0002-4891-9273 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Surveys in geophysics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 |g 45(2023), 1 vom: 01. Juni, Seite 1-54 |w (DE-627)315620331 |w (DE-600)2017797-5 |x 1573-0956 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2023 |g number:1 |g day:01 |g month:06 |g pages:1-54 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10712-023-09792-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 45 |j 2023 |e 1 |b 01 |c 06 |h 1-54 |
author_variant |
m h mh o s os |
---|---|
matchkey_str |
article:15730956:2023----::hoisfrwhnpoaainfaallhslroeh |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s10712-023-09792-x doi (DE-627)SPR05454386X (SPR)s10712-023-09792-x-e DE-627 ger DE-627 rakwb eng Hanzelka, Miroslav verfasserin (orcid)0000-0001-9716-5263 aut Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 Santolík, Ondřej (orcid)0000-0002-4891-9273 aut Enthalten in Surveys in geophysics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 45(2023), 1 vom: 01. Juni, Seite 1-54 (DE-627)315620331 (DE-600)2017797-5 1573-0956 nnns volume:45 year:2023 number:1 day:01 month:06 pages:1-54 https://dx.doi.org/10.1007/s10712-023-09792-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 45 2023 1 01 06 1-54 |
spelling |
10.1007/s10712-023-09792-x doi (DE-627)SPR05454386X (SPR)s10712-023-09792-x-e DE-627 ger DE-627 rakwb eng Hanzelka, Miroslav verfasserin (orcid)0000-0001-9716-5263 aut Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 Santolík, Ondřej (orcid)0000-0002-4891-9273 aut Enthalten in Surveys in geophysics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 45(2023), 1 vom: 01. Juni, Seite 1-54 (DE-627)315620331 (DE-600)2017797-5 1573-0956 nnns volume:45 year:2023 number:1 day:01 month:06 pages:1-54 https://dx.doi.org/10.1007/s10712-023-09792-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 45 2023 1 01 06 1-54 |
allfields_unstemmed |
10.1007/s10712-023-09792-x doi (DE-627)SPR05454386X (SPR)s10712-023-09792-x-e DE-627 ger DE-627 rakwb eng Hanzelka, Miroslav verfasserin (orcid)0000-0001-9716-5263 aut Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 Santolík, Ondřej (orcid)0000-0002-4891-9273 aut Enthalten in Surveys in geophysics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 45(2023), 1 vom: 01. Juni, Seite 1-54 (DE-627)315620331 (DE-600)2017797-5 1573-0956 nnns volume:45 year:2023 number:1 day:01 month:06 pages:1-54 https://dx.doi.org/10.1007/s10712-023-09792-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 45 2023 1 01 06 1-54 |
allfieldsGer |
10.1007/s10712-023-09792-x doi (DE-627)SPR05454386X (SPR)s10712-023-09792-x-e DE-627 ger DE-627 rakwb eng Hanzelka, Miroslav verfasserin (orcid)0000-0001-9716-5263 aut Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 Santolík, Ondřej (orcid)0000-0002-4891-9273 aut Enthalten in Surveys in geophysics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 45(2023), 1 vom: 01. Juni, Seite 1-54 (DE-627)315620331 (DE-600)2017797-5 1573-0956 nnns volume:45 year:2023 number:1 day:01 month:06 pages:1-54 https://dx.doi.org/10.1007/s10712-023-09792-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 45 2023 1 01 06 1-54 |
allfieldsSound |
10.1007/s10712-023-09792-x doi (DE-627)SPR05454386X (SPR)s10712-023-09792-x-e DE-627 ger DE-627 rakwb eng Hanzelka, Miroslav verfasserin (orcid)0000-0001-9716-5263 aut Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 Santolík, Ondřej (orcid)0000-0002-4891-9273 aut Enthalten in Surveys in geophysics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 45(2023), 1 vom: 01. Juni, Seite 1-54 (DE-627)315620331 (DE-600)2017797-5 1573-0956 nnns volume:45 year:2023 number:1 day:01 month:06 pages:1-54 https://dx.doi.org/10.1007/s10712-023-09792-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 45 2023 1 01 06 1-54 |
language |
English |
source |
Enthalten in Surveys in geophysics 45(2023), 1 vom: 01. Juni, Seite 1-54 volume:45 year:2023 number:1 day:01 month:06 pages:1-54 |
sourceStr |
Enthalten in Surveys in geophysics 45(2023), 1 vom: 01. Juni, Seite 1-54 volume:45 year:2023 number:1 day:01 month:06 pages:1-54 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chorus emission Whistler mode Nonlinear growth Wave–particle interactions Resonant current Cyclotron resonance Sideband instability Backwards-wave oscillator Space plasma Plasma waves |
isfreeaccess_bool |
true |
container_title |
Surveys in geophysics |
authorswithroles_txt_mv |
Hanzelka, Miroslav @@aut@@ Santolík, Ondřej @@aut@@ |
publishDateDaySort_date |
2023-06-01T00:00:00Z |
hierarchy_top_id |
315620331 |
id |
SPR05454386X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05454386X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240128070227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240128s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10712-023-09792-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05454386X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10712-023-09792-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanzelka, Miroslav</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9716-5263</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chorus emission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whistler mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear growth</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave–particle interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant current</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclotron resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sideband instability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backwards-wave oscillator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space plasma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma waves</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santolík, Ondřej</subfield><subfield code="0">(orcid)0000-0002-4891-9273</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surveys in geophysics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972</subfield><subfield code="g">45(2023), 1 vom: 01. Juni, Seite 1-54</subfield><subfield code="w">(DE-627)315620331</subfield><subfield code="w">(DE-600)2017797-5</subfield><subfield code="x">1573-0956</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1-54</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10712-023-09792-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">06</subfield><subfield code="h">1-54</subfield></datafield></record></collection>
|
author |
Hanzelka, Miroslav |
spellingShingle |
Hanzelka, Miroslav misc Chorus emission misc Whistler mode misc Nonlinear growth misc Wave–particle interactions misc Resonant current misc Cyclotron resonance misc Sideband instability misc Backwards-wave oscillator misc Space plasma misc Plasma waves Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
authorStr |
Hanzelka, Miroslav |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)315620331 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-0956 |
topic_title |
Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review Chorus emission (dpeaa)DE-He213 Whistler mode (dpeaa)DE-He213 Nonlinear growth (dpeaa)DE-He213 Wave–particle interactions (dpeaa)DE-He213 Resonant current (dpeaa)DE-He213 Cyclotron resonance (dpeaa)DE-He213 Sideband instability (dpeaa)DE-He213 Backwards-wave oscillator (dpeaa)DE-He213 Space plasma (dpeaa)DE-He213 Plasma waves (dpeaa)DE-He213 |
topic |
misc Chorus emission misc Whistler mode misc Nonlinear growth misc Wave–particle interactions misc Resonant current misc Cyclotron resonance misc Sideband instability misc Backwards-wave oscillator misc Space plasma misc Plasma waves |
topic_unstemmed |
misc Chorus emission misc Whistler mode misc Nonlinear growth misc Wave–particle interactions misc Resonant current misc Cyclotron resonance misc Sideband instability misc Backwards-wave oscillator misc Space plasma misc Plasma waves |
topic_browse |
misc Chorus emission misc Whistler mode misc Nonlinear growth misc Wave–particle interactions misc Resonant current misc Cyclotron resonance misc Sideband instability misc Backwards-wave oscillator misc Space plasma misc Plasma waves |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Surveys in geophysics |
hierarchy_parent_id |
315620331 |
hierarchy_top_title |
Surveys in geophysics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)315620331 (DE-600)2017797-5 |
title |
Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
ctrlnum |
(DE-627)SPR05454386X (SPR)s10712-023-09792-x-e |
title_full |
Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
author_sort |
Hanzelka, Miroslav |
journal |
Surveys in geophysics |
journalStr |
Surveys in geophysics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Hanzelka, Miroslav Santolík, Ondřej |
container_volume |
45 |
format_se |
Elektronische Aufsätze |
author-letter |
Hanzelka, Miroslav |
doi_str_mv |
10.1007/s10712-023-09792-x |
normlink |
(ORCID)0000-0001-9716-5263 (ORCID)0000-0002-4891-9273 |
normlink_prefix_str_mv |
(orcid)0000-0001-9716-5263 (orcid)0000-0002-4891-9273 |
title_sort |
theories of growth and propagation of parallel whistler-mode chorus emissions: a review |
title_auth |
Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
abstract |
Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. © The Author(s) 2023 |
abstractGer |
Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. © The Author(s) 2023 |
abstract_unstemmed |
Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review |
url |
https://dx.doi.org/10.1007/s10712-023-09792-x |
remote_bool |
true |
author2 |
Santolík, Ondřej |
author2Str |
Santolík, Ondřej |
ppnlink |
315620331 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10712-023-09792-x |
up_date |
2024-07-04T02:06:52.579Z |
_version_ |
1803612389463031808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05454386X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240128070227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240128s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10712-023-09792-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05454386X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10712-023-09792-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanzelka, Miroslav</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9716-5263</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theories of Growth and Propagation of Parallel Whistler-Mode Chorus Emissions: A Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The significant role of nonlinear wave–particle interactions in the macrodynamics and microdynamics of the Earth’s outer radiation belt has long been recognised. Electron dropouts during magnetic storms, microbursts in atmospheric electron precipitation, and pulsating auroras are all associated with the rapid scattering of energetic electrons by the whistler-mode chorus, a structured electromagnetic emission known to reach amplitudes of about %$1\%%$ of the ambient magnetic field. Despite the decades of experimental and theoretical investigations of chorus and the recent progress achieved through numerical simulations, there is no definitive theory of the chorus formation mechanism, not even in the simple case of parallel (one-dimensional) propagation. Here we follow the evolution of these theories from their beginnings in the 1960s to the current state, including newly emerging self-consistent excitation models. A critical review of the unique features of each approach is provided, taking into account the most recent spacecraft observations of the fine structure of chorus. Conflicting interpretations of the role of resonant electron current and magnetic field inhomogeneity are discussed. We also discuss the interplay between nonlinear growth and microscale propagation effects and identify future theoretical and observational challenges stemming from the two-dimensional aspects of chorus propagation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chorus emission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Whistler mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear growth</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave–particle interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant current</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclotron resonance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sideband instability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backwards-wave oscillator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space plasma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma waves</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santolík, Ondřej</subfield><subfield code="0">(orcid)0000-0002-4891-9273</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surveys in geophysics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972</subfield><subfield code="g">45(2023), 1 vom: 01. Juni, Seite 1-54</subfield><subfield code="w">(DE-627)315620331</subfield><subfield code="w">(DE-600)2017797-5</subfield><subfield code="x">1573-0956</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1-54</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10712-023-09792-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">06</subfield><subfield code="h">1-54</subfield></datafield></record></collection>
|
score |
7.4016685 |