Development of a machine learning-based radiomics signature for estimating breast cancer TME phenotypes and predicting anti-PD-1/PD-L1 immunotherapy response

Backgrounds Since breast cancer patients respond diversely to immunotherapy, there is an urgent need to explore novel biomarkers to precisely predict clinical responses and enhance therapeutic efficacy. The purpose of our present research was to construct and independently validate a biomarker of tu...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Han, Xiaorui [verfasserIn]

Guo, Yuan

Ye, Huifen

Chen, Zhihong

Hu, Qingru

Wei, Xinhua

Liu, Zaiyi

Liang, Changhong

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Machine learning

Radiomics signature

Breast cancer

Tumor microenvironment

Anmerkung:

© The Author(s) 2024

Übergeordnetes Werk:

Enthalten in: Breast cancer research - London : BioMed Central, 1999, 26(2024), 1 vom: 29. Jan.

Übergeordnetes Werk:

volume:26 ; year:2024 ; number:1 ; day:29 ; month:01

Links:

Volltext

DOI / URN:

10.1186/s13058-024-01776-y

Katalog-ID:

SPR054568145

Nicht das Richtige dabei?

Schreiben Sie uns!