MLP and CNN-based Classification of Points of Interest in Side-channel Attacks
Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positi...
Ausführliche Beschreibung
Autor*in: |
Feng, Hanwen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Authors 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Networked and Distributed Computing - Springer Netherlands, 2022, 8(2020), 2 vom: März, Seite 108-117 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:2 ; month:03 ; pages:108-117 |
Links: |
---|
DOI / URN: |
10.2991/ijndc.k.200326.001 |
---|
Katalog-ID: |
SPR05457837X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05457837X | ||
003 | DE-627 | ||
005 | 20240130064721.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240130s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2991/ijndc.k.200326.001 |2 doi | |
035 | |a (DE-627)SPR05457837X | ||
035 | |a (SPR)ijndc.k.200326.001-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feng, Hanwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Authors 2020 | ||
520 | |a Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. | ||
650 | 4 | |a Point of interest |7 (dpeaa)DE-He213 | |
650 | 4 | |a forward difference |7 (dpeaa)DE-He213 | |
650 | 4 | |a trace |7 (dpeaa)DE-He213 | |
650 | 4 | |a multi-layer perceptron |7 (dpeaa)DE-He213 | |
650 | 4 | |a convolutional neural network |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lin, Weiguo |4 aut | |
700 | 1 | |a Shang, Wenqian |4 aut | |
700 | 1 | |a Cao, Jianxiang |4 aut | |
700 | 1 | |a Huang, Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Networked and Distributed Computing |d Springer Netherlands, 2022 |g 8(2020), 2 vom: März, Seite 108-117 |w (DE-627)1006076743 |x 2211-7946 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:2 |g month:03 |g pages:108-117 |
856 | 4 | 0 | |u https://dx.doi.org/10.2991/ijndc.k.200326.001 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 2 |c 03 |h 108-117 |
author_variant |
h f hf w l wl w s ws j c jc w h wh |
---|---|
matchkey_str |
article:22117946:2020----::ladnbsdlsiiainfonsfneetn |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.2991/ijndc.k.200326.001 doi (DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e DE-627 ger DE-627 rakwb eng Feng, Hanwen verfasserin aut MLP and CNN-based Classification of Points of Interest in Side-channel Attacks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2020 Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 Lin, Weiguo aut Shang, Wenqian aut Cao, Jianxiang aut Huang, Wei aut Enthalten in International Journal of Networked and Distributed Computing Springer Netherlands, 2022 8(2020), 2 vom: März, Seite 108-117 (DE-627)1006076743 2211-7946 nnns volume:8 year:2020 number:2 month:03 pages:108-117 https://dx.doi.org/10.2991/ijndc.k.200326.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 03 108-117 |
spelling |
10.2991/ijndc.k.200326.001 doi (DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e DE-627 ger DE-627 rakwb eng Feng, Hanwen verfasserin aut MLP and CNN-based Classification of Points of Interest in Side-channel Attacks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2020 Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 Lin, Weiguo aut Shang, Wenqian aut Cao, Jianxiang aut Huang, Wei aut Enthalten in International Journal of Networked and Distributed Computing Springer Netherlands, 2022 8(2020), 2 vom: März, Seite 108-117 (DE-627)1006076743 2211-7946 nnns volume:8 year:2020 number:2 month:03 pages:108-117 https://dx.doi.org/10.2991/ijndc.k.200326.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 03 108-117 |
allfields_unstemmed |
10.2991/ijndc.k.200326.001 doi (DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e DE-627 ger DE-627 rakwb eng Feng, Hanwen verfasserin aut MLP and CNN-based Classification of Points of Interest in Side-channel Attacks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2020 Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 Lin, Weiguo aut Shang, Wenqian aut Cao, Jianxiang aut Huang, Wei aut Enthalten in International Journal of Networked and Distributed Computing Springer Netherlands, 2022 8(2020), 2 vom: März, Seite 108-117 (DE-627)1006076743 2211-7946 nnns volume:8 year:2020 number:2 month:03 pages:108-117 https://dx.doi.org/10.2991/ijndc.k.200326.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 03 108-117 |
allfieldsGer |
10.2991/ijndc.k.200326.001 doi (DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e DE-627 ger DE-627 rakwb eng Feng, Hanwen verfasserin aut MLP and CNN-based Classification of Points of Interest in Side-channel Attacks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2020 Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 Lin, Weiguo aut Shang, Wenqian aut Cao, Jianxiang aut Huang, Wei aut Enthalten in International Journal of Networked and Distributed Computing Springer Netherlands, 2022 8(2020), 2 vom: März, Seite 108-117 (DE-627)1006076743 2211-7946 nnns volume:8 year:2020 number:2 month:03 pages:108-117 https://dx.doi.org/10.2991/ijndc.k.200326.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 03 108-117 |
allfieldsSound |
10.2991/ijndc.k.200326.001 doi (DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e DE-627 ger DE-627 rakwb eng Feng, Hanwen verfasserin aut MLP and CNN-based Classification of Points of Interest in Side-channel Attacks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Authors 2020 Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 Lin, Weiguo aut Shang, Wenqian aut Cao, Jianxiang aut Huang, Wei aut Enthalten in International Journal of Networked and Distributed Computing Springer Netherlands, 2022 8(2020), 2 vom: März, Seite 108-117 (DE-627)1006076743 2211-7946 nnns volume:8 year:2020 number:2 month:03 pages:108-117 https://dx.doi.org/10.2991/ijndc.k.200326.001 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 03 108-117 |
language |
English |
source |
Enthalten in International Journal of Networked and Distributed Computing 8(2020), 2 vom: März, Seite 108-117 volume:8 year:2020 number:2 month:03 pages:108-117 |
sourceStr |
Enthalten in International Journal of Networked and Distributed Computing 8(2020), 2 vom: März, Seite 108-117 volume:8 year:2020 number:2 month:03 pages:108-117 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Point of interest forward difference trace multi-layer perceptron convolutional neural network |
isfreeaccess_bool |
true |
container_title |
International Journal of Networked and Distributed Computing |
authorswithroles_txt_mv |
Feng, Hanwen @@aut@@ Lin, Weiguo @@aut@@ Shang, Wenqian @@aut@@ Cao, Jianxiang @@aut@@ Huang, Wei @@aut@@ |
publishDateDaySort_date |
2020-03-01T00:00:00Z |
hierarchy_top_id |
1006076743 |
id |
SPR05457837X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05457837X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130064721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/ijndc.k.200326.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05457837X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ijndc.k.200326.001-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Hanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MLP and CNN-based Classification of Points of Interest in Side-channel Attacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Authors 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point of interest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forward difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trace</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer perceptron</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Weiguo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Wenqian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Jianxiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Networked and Distributed Computing</subfield><subfield code="d">Springer Netherlands, 2022</subfield><subfield code="g">8(2020), 2 vom: März, Seite 108-117</subfield><subfield code="w">(DE-627)1006076743</subfield><subfield code="x">2211-7946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:108-117</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/ijndc.k.200326.001</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">108-117</subfield></datafield></record></collection>
|
author |
Feng, Hanwen |
spellingShingle |
Feng, Hanwen misc Point of interest misc forward difference misc trace misc multi-layer perceptron misc convolutional neural network MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
authorStr |
Feng, Hanwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1006076743 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2211-7946 |
topic_title |
MLP and CNN-based Classification of Points of Interest in Side-channel Attacks Point of interest (dpeaa)DE-He213 forward difference (dpeaa)DE-He213 trace (dpeaa)DE-He213 multi-layer perceptron (dpeaa)DE-He213 convolutional neural network (dpeaa)DE-He213 |
topic |
misc Point of interest misc forward difference misc trace misc multi-layer perceptron misc convolutional neural network |
topic_unstemmed |
misc Point of interest misc forward difference misc trace misc multi-layer perceptron misc convolutional neural network |
topic_browse |
misc Point of interest misc forward difference misc trace misc multi-layer perceptron misc convolutional neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Networked and Distributed Computing |
hierarchy_parent_id |
1006076743 |
hierarchy_top_title |
International Journal of Networked and Distributed Computing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1006076743 |
title |
MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
ctrlnum |
(DE-627)SPR05457837X (SPR)ijndc.k.200326.001-e |
title_full |
MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
author_sort |
Feng, Hanwen |
journal |
International Journal of Networked and Distributed Computing |
journalStr |
International Journal of Networked and Distributed Computing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
108 |
author_browse |
Feng, Hanwen Lin, Weiguo Shang, Wenqian Cao, Jianxiang Huang, Wei |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Hanwen |
doi_str_mv |
10.2991/ijndc.k.200326.001 |
title_sort |
mlp and cnn-based classification of points of interest in side-channel attacks |
title_auth |
MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
abstract |
Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. © The Authors 2020 |
abstractGer |
Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. © The Authors 2020 |
abstract_unstemmed |
Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation. © The Authors 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
MLP and CNN-based Classification of Points of Interest in Side-channel Attacks |
url |
https://dx.doi.org/10.2991/ijndc.k.200326.001 |
remote_bool |
true |
author2 |
Lin, Weiguo Shang, Wenqian Cao, Jianxiang Huang, Wei |
author2Str |
Lin, Weiguo Shang, Wenqian Cao, Jianxiang Huang, Wei |
ppnlink |
1006076743 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2991/ijndc.k.200326.001 |
up_date |
2024-07-04T02:14:58.395Z |
_version_ |
1803612898875932672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05457837X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240130064721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240130s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/ijndc.k.200326.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05457837X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ijndc.k.200326.001-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Hanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MLP and CNN-based Classification of Points of Interest in Side-channel Attacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Authors 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A trace contains sample points, some of which contain useful information that can be used to obtain a key in side-channel attacks. We used public datasets from the ANSSI SCA Database (ASCAD) as well as SM4 traces to learn whether a trace consisting of Points of Interest (POIs) have a positive effect using neural networks. Different methods were used on these datasets to choose POI or transform the traces into Principal Component Analysis (PCA) traces and forward-difference traces. The results show that two datasets are combined in different ways that improve the classification using neural networks. For example, for the ANSSI SCA database, PCA is a better approach to compress a 700-dimensional trace into a 100-dimensional trace. For SM4 traces, the amount of traces required can be reduced in side-channel attacks subsequent to forward-difference transformation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point of interest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forward difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trace</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer perceptron</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Weiguo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, Wenqian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Jianxiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Networked and Distributed Computing</subfield><subfield code="d">Springer Netherlands, 2022</subfield><subfield code="g">8(2020), 2 vom: März, Seite 108-117</subfield><subfield code="w">(DE-627)1006076743</subfield><subfield code="x">2211-7946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:108-117</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/ijndc.k.200326.001</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">108-117</subfield></datafield></record></collection>
|
score |
7.401023 |