Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation
Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary cond...
Ausführliche Beschreibung
Autor*in: |
Kamvissis, Spyridon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© the authors 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nonlinear mathematical physics - Abingdon, Oxon : Taylor & Francis, 1994, 22(2015), 3 vom: Jan., Seite 448-473 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2015 ; number:3 ; month:01 ; pages:448-473 |
Links: |
---|
DOI / URN: |
10.1080/14029251.2015.1079428 |
---|
Katalog-ID: |
SPR054598761 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054598761 | ||
003 | DE-627 | ||
005 | 20240131064722.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240131s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/14029251.2015.1079428 |2 doi | |
035 | |a (DE-627)SPR054598761 | ||
035 | |a (SPR)14029251.2015.1079428-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kamvissis, Spyridon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © the authors 2014 | ||
520 | |a Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. | ||
650 | 4 | |a initial boundary value problems |7 (dpeaa)DE-He213 | |
650 | 4 | |a oscillatory initial data |7 (dpeaa)DE-He213 | |
650 | 4 | |a nonlinear Schrödinger equation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shepelsky, Dmitry |4 aut | |
700 | 1 | |a Zielinski, Lech |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nonlinear mathematical physics |d Abingdon, Oxon : Taylor & Francis, 1994 |g 22(2015), 3 vom: Jan., Seite 448-473 |w (DE-627)325293635 |w (DE-600)2034956-7 |x 1776-0852 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2015 |g number:3 |g month:01 |g pages:448-473 |
856 | 4 | 0 | |u https://dx.doi.org/10.1080/14029251.2015.1079428 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2015 |e 3 |c 01 |h 448-473 |
author_variant |
s k sk d s ds l z lz |
---|---|
matchkey_str |
article:17760852:2015----::oibudrcniinnsokrbefrhfcsnnni |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/14029251.2015.1079428 doi (DE-627)SPR054598761 (SPR)14029251.2015.1079428-e DE-627 ger DE-627 rakwb eng Kamvissis, Spyridon verfasserin aut Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2014 Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 Shepelsky, Dmitry aut Zielinski, Lech aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 22(2015), 3 vom: Jan., Seite 448-473 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:22 year:2015 number:3 month:01 pages:448-473 https://dx.doi.org/10.1080/14029251.2015.1079428 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2015 3 01 448-473 |
spelling |
10.1080/14029251.2015.1079428 doi (DE-627)SPR054598761 (SPR)14029251.2015.1079428-e DE-627 ger DE-627 rakwb eng Kamvissis, Spyridon verfasserin aut Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2014 Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 Shepelsky, Dmitry aut Zielinski, Lech aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 22(2015), 3 vom: Jan., Seite 448-473 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:22 year:2015 number:3 month:01 pages:448-473 https://dx.doi.org/10.1080/14029251.2015.1079428 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2015 3 01 448-473 |
allfields_unstemmed |
10.1080/14029251.2015.1079428 doi (DE-627)SPR054598761 (SPR)14029251.2015.1079428-e DE-627 ger DE-627 rakwb eng Kamvissis, Spyridon verfasserin aut Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2014 Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 Shepelsky, Dmitry aut Zielinski, Lech aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 22(2015), 3 vom: Jan., Seite 448-473 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:22 year:2015 number:3 month:01 pages:448-473 https://dx.doi.org/10.1080/14029251.2015.1079428 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2015 3 01 448-473 |
allfieldsGer |
10.1080/14029251.2015.1079428 doi (DE-627)SPR054598761 (SPR)14029251.2015.1079428-e DE-627 ger DE-627 rakwb eng Kamvissis, Spyridon verfasserin aut Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2014 Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 Shepelsky, Dmitry aut Zielinski, Lech aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 22(2015), 3 vom: Jan., Seite 448-473 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:22 year:2015 number:3 month:01 pages:448-473 https://dx.doi.org/10.1080/14029251.2015.1079428 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2015 3 01 448-473 |
allfieldsSound |
10.1080/14029251.2015.1079428 doi (DE-627)SPR054598761 (SPR)14029251.2015.1079428-e DE-627 ger DE-627 rakwb eng Kamvissis, Spyridon verfasserin aut Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © the authors 2014 Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 Shepelsky, Dmitry aut Zielinski, Lech aut Enthalten in Journal of nonlinear mathematical physics Abingdon, Oxon : Taylor & Francis, 1994 22(2015), 3 vom: Jan., Seite 448-473 (DE-627)325293635 (DE-600)2034956-7 1776-0852 nnns volume:22 year:2015 number:3 month:01 pages:448-473 https://dx.doi.org/10.1080/14029251.2015.1079428 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2015 3 01 448-473 |
language |
English |
source |
Enthalten in Journal of nonlinear mathematical physics 22(2015), 3 vom: Jan., Seite 448-473 volume:22 year:2015 number:3 month:01 pages:448-473 |
sourceStr |
Enthalten in Journal of nonlinear mathematical physics 22(2015), 3 vom: Jan., Seite 448-473 volume:22 year:2015 number:3 month:01 pages:448-473 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
initial boundary value problems oscillatory initial data nonlinear Schrödinger equation |
isfreeaccess_bool |
true |
container_title |
Journal of nonlinear mathematical physics |
authorswithroles_txt_mv |
Kamvissis, Spyridon @@aut@@ Shepelsky, Dmitry @@aut@@ Zielinski, Lech @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
325293635 |
id |
SPR054598761 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054598761</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131064722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240131s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/14029251.2015.1079428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054598761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)14029251.2015.1079428-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kamvissis, Spyridon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial boundary value problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oscillatory initial data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Schrödinger equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shepelsky, Dmitry</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zielinski, Lech</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear mathematical physics</subfield><subfield code="d">Abingdon, Oxon : Taylor & Francis, 1994</subfield><subfield code="g">22(2015), 3 vom: Jan., Seite 448-473</subfield><subfield code="w">(DE-627)325293635</subfield><subfield code="w">(DE-600)2034956-7</subfield><subfield code="x">1776-0852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:448-473</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/14029251.2015.1079428</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">01</subfield><subfield code="h">448-473</subfield></datafield></record></collection>
|
author |
Kamvissis, Spyridon |
spellingShingle |
Kamvissis, Spyridon misc initial boundary value problems misc oscillatory initial data misc nonlinear Schrödinger equation Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
authorStr |
Kamvissis, Spyridon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325293635 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1776-0852 |
topic_title |
Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation initial boundary value problems (dpeaa)DE-He213 oscillatory initial data (dpeaa)DE-He213 nonlinear Schrödinger equation (dpeaa)DE-He213 |
topic |
misc initial boundary value problems misc oscillatory initial data misc nonlinear Schrödinger equation |
topic_unstemmed |
misc initial boundary value problems misc oscillatory initial data misc nonlinear Schrödinger equation |
topic_browse |
misc initial boundary value problems misc oscillatory initial data misc nonlinear Schrödinger equation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of nonlinear mathematical physics |
hierarchy_parent_id |
325293635 |
hierarchy_top_title |
Journal of nonlinear mathematical physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)325293635 (DE-600)2034956-7 |
title |
Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
ctrlnum |
(DE-627)SPR054598761 (SPR)14029251.2015.1079428-e |
title_full |
Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
author_sort |
Kamvissis, Spyridon |
journal |
Journal of nonlinear mathematical physics |
journalStr |
Journal of nonlinear mathematical physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
448 |
author_browse |
Kamvissis, Spyridon Shepelsky, Dmitry Zielinski, Lech |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Kamvissis, Spyridon |
doi_str_mv |
10.1080/14029251.2015.1079428 |
title_sort |
robin boundary condition and shock problem for the focusing nonlinear schrödinger equation |
title_auth |
Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
abstract |
Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. © the authors 2014 |
abstractGer |
Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. © the authors 2014 |
abstract_unstemmed |
Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0. © the authors 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation |
url |
https://dx.doi.org/10.1080/14029251.2015.1079428 |
remote_bool |
true |
author2 |
Shepelsky, Dmitry Zielinski, Lech |
author2Str |
Shepelsky, Dmitry Zielinski, Lech |
ppnlink |
325293635 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/14029251.2015.1079428 |
up_date |
2024-07-04T02:19:31.977Z |
_version_ |
1803613185749549056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054598761</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131064722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240131s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/14029251.2015.1079428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054598761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)14029251.2015.1079428-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kamvissis, Spyridon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robin boundary condition and shock problem for the focusing nonlinear Schrödinger equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© the authors 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the initial boundary value (IBV) problem for the focusing nonlinear Schrödinger equation in the quarter plane x > 0,t > 0 in the case of periodic initial data, u(x,0) = α exp(−2iβx) (or asymptotically periodic, u(x,0) − α exp(−2iβx) → 0 as x → ∞), and a Robin boundary condition at x = 0: ux(0,t)+qu(0,t) = 0, q ≠ 0. Our approach is based on the unified transform (the Fokas method) combined with symmetry considerations for the corresponding Riemann-Hilbert (RH) problems. We present the representation of the solution of the IBV problem in terms of the solution of an associated RH problem. This representation also allows us to determine an initial value (IV) problem, of a shock type, a solution of which being restricted to the half-line x > 0 is the solution of the original IBV problem. In the case β < 0, the large-time asymptotics of the solution of the IBV problem is presented in the “rarefaction” sector, demonstrating, in particular, an oscillatory behavior of the boundary values in the case q > 0, contrary to the decay to 0 in the case q < 0.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">initial boundary value problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oscillatory initial data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Schrödinger equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shepelsky, Dmitry</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zielinski, Lech</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nonlinear mathematical physics</subfield><subfield code="d">Abingdon, Oxon : Taylor & Francis, 1994</subfield><subfield code="g">22(2015), 3 vom: Jan., Seite 448-473</subfield><subfield code="w">(DE-627)325293635</subfield><subfield code="w">(DE-600)2034956-7</subfield><subfield code="x">1776-0852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:448-473</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1080/14029251.2015.1079428</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">01</subfield><subfield code="h">448-473</subfield></datafield></record></collection>
|
score |
7.401602 |