A comparison of embedding aggregation strategies in drug–target interaction prediction

Abstract The prediction of interactions between novel drugs and biological targets is a vital step in the early stage of the drug discovery pipeline. Many deep learning approaches have been proposed over the last decade, with a substantial fraction of them sharing the same underlying two-branch arch...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Iliadis, Dimitrios [verfasserIn]

De Baets, Bernard

Pahikkala, Tapio

Waegeman, Willem

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Drug–target interaction prediction

Binding affinity prediction

Recommender systems

Deep learning

Anmerkung:

© The Author(s) 2024

Übergeordnetes Werk:

Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 25(2024), 1 vom: 06. Feb.

Übergeordnetes Werk:

volume:25 ; year:2024 ; number:1 ; day:06 ; month:02

Links:

Volltext

DOI / URN:

10.1186/s12859-024-05684-y

Katalog-ID:

SPR054667941

Nicht das Richtige dabei?

Schreiben Sie uns!