Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking
Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is...
Ausführliche Beschreibung
Autor*in: |
Bekele, Addisu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: The Arabian journal for science and engineering - Berlin : Springer, 2011, 49(2023), 2 vom: 21. Sept., Seite 2581-2597 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2023 ; number:2 ; day:21 ; month:09 ; pages:2581-2597 |
Links: |
---|
DOI / URN: |
10.1007/s13369-023-08278-7 |
---|
Katalog-ID: |
SPR05469938X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05469938X | ||
003 | DE-627 | ||
005 | 20240209064659.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240209s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13369-023-08278-7 |2 doi | |
035 | |a (DE-627)SPR05469938X | ||
035 | |a (SPR)s13369-023-08278-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bekele, Addisu |e verfasserin |0 (orcid)0000-0001-5827-2189 |4 aut | |
245 | 1 | 0 | |a Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s | ||
650 | 4 | |a Solar collector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Parabolic dish |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanoparticles |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nanofluid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cooking |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phase change material |7 (dpeaa)DE-He213 | |
700 | 1 | |a Dereje, Shifera |4 aut | |
700 | 1 | |a Pandey, Vivek |0 (orcid)0000-0001-9570-7751 |4 aut | |
700 | 1 | |a Badruddin, Irfan Anjum |0 (orcid)0000-0002-2247-7999 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Arabian journal for science and engineering |d Berlin : Springer, 2011 |g 49(2023), 2 vom: 21. Sept., Seite 2581-2597 |w (DE-627)588780731 |w (DE-600)2471504-9 |x 2191-4281 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2023 |g number:2 |g day:21 |g month:09 |g pages:2581-2597 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13369-023-08278-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 49 |j 2023 |e 2 |b 21 |c 09 |h 2581-2597 |
author_variant |
a b ab s d sd v p vp i a b ia iab |
---|---|
matchkey_str |
article:21914281:2023----::xeietlnetgtooprblcihoacletrsnnn |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s13369-023-08278-7 doi (DE-627)SPR05469938X (SPR)s13369-023-08278-7-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin (orcid)0000-0001-5827-2189 aut Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 Dereje, Shifera aut Pandey, Vivek (orcid)0000-0001-9570-7751 aut Badruddin, Irfan Anjum (orcid)0000-0002-2247-7999 aut Enthalten in The Arabian journal for science and engineering Berlin : Springer, 2011 49(2023), 2 vom: 21. Sept., Seite 2581-2597 (DE-627)588780731 (DE-600)2471504-9 2191-4281 nnns volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 https://dx.doi.org/10.1007/s13369-023-08278-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 49 2023 2 21 09 2581-2597 |
spelling |
10.1007/s13369-023-08278-7 doi (DE-627)SPR05469938X (SPR)s13369-023-08278-7-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin (orcid)0000-0001-5827-2189 aut Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 Dereje, Shifera aut Pandey, Vivek (orcid)0000-0001-9570-7751 aut Badruddin, Irfan Anjum (orcid)0000-0002-2247-7999 aut Enthalten in The Arabian journal for science and engineering Berlin : Springer, 2011 49(2023), 2 vom: 21. Sept., Seite 2581-2597 (DE-627)588780731 (DE-600)2471504-9 2191-4281 nnns volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 https://dx.doi.org/10.1007/s13369-023-08278-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 49 2023 2 21 09 2581-2597 |
allfields_unstemmed |
10.1007/s13369-023-08278-7 doi (DE-627)SPR05469938X (SPR)s13369-023-08278-7-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin (orcid)0000-0001-5827-2189 aut Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 Dereje, Shifera aut Pandey, Vivek (orcid)0000-0001-9570-7751 aut Badruddin, Irfan Anjum (orcid)0000-0002-2247-7999 aut Enthalten in The Arabian journal for science and engineering Berlin : Springer, 2011 49(2023), 2 vom: 21. Sept., Seite 2581-2597 (DE-627)588780731 (DE-600)2471504-9 2191-4281 nnns volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 https://dx.doi.org/10.1007/s13369-023-08278-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 49 2023 2 21 09 2581-2597 |
allfieldsGer |
10.1007/s13369-023-08278-7 doi (DE-627)SPR05469938X (SPR)s13369-023-08278-7-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin (orcid)0000-0001-5827-2189 aut Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 Dereje, Shifera aut Pandey, Vivek (orcid)0000-0001-9570-7751 aut Badruddin, Irfan Anjum (orcid)0000-0002-2247-7999 aut Enthalten in The Arabian journal for science and engineering Berlin : Springer, 2011 49(2023), 2 vom: 21. Sept., Seite 2581-2597 (DE-627)588780731 (DE-600)2471504-9 2191-4281 nnns volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 https://dx.doi.org/10.1007/s13369-023-08278-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 49 2023 2 21 09 2581-2597 |
allfieldsSound |
10.1007/s13369-023-08278-7 doi (DE-627)SPR05469938X (SPR)s13369-023-08278-7-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin (orcid)0000-0001-5827-2189 aut Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 Dereje, Shifera aut Pandey, Vivek (orcid)0000-0001-9570-7751 aut Badruddin, Irfan Anjum (orcid)0000-0002-2247-7999 aut Enthalten in The Arabian journal for science and engineering Berlin : Springer, 2011 49(2023), 2 vom: 21. Sept., Seite 2581-2597 (DE-627)588780731 (DE-600)2471504-9 2191-4281 nnns volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 https://dx.doi.org/10.1007/s13369-023-08278-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 49 2023 2 21 09 2581-2597 |
language |
English |
source |
Enthalten in The Arabian journal for science and engineering 49(2023), 2 vom: 21. Sept., Seite 2581-2597 volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 |
sourceStr |
Enthalten in The Arabian journal for science and engineering 49(2023), 2 vom: 21. Sept., Seite 2581-2597 volume:49 year:2023 number:2 day:21 month:09 pages:2581-2597 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Solar collector Parabolic dish Nanoparticles Nanofluid Cooking Phase change material |
isfreeaccess_bool |
false |
container_title |
The Arabian journal for science and engineering |
authorswithroles_txt_mv |
Bekele, Addisu @@aut@@ Dereje, Shifera @@aut@@ Pandey, Vivek @@aut@@ Badruddin, Irfan Anjum @@aut@@ |
publishDateDaySort_date |
2023-09-21T00:00:00Z |
hierarchy_top_id |
588780731 |
id |
SPR05469938X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05469938X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240209064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13369-023-08278-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05469938X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13369-023-08278-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bekele, Addisu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5827-2189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic dish</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change material</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dereje, Shifera</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pandey, Vivek</subfield><subfield code="0">(orcid)0000-0001-9570-7751</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Badruddin, Irfan Anjum</subfield><subfield code="0">(orcid)0000-0002-2247-7999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Arabian journal for science and engineering</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">49(2023), 2 vom: 21. Sept., Seite 2581-2597</subfield><subfield code="w">(DE-627)588780731</subfield><subfield code="w">(DE-600)2471504-9</subfield><subfield code="x">2191-4281</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2581-2597</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13369-023-08278-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield><subfield code="h">2581-2597</subfield></datafield></record></collection>
|
author |
Bekele, Addisu |
spellingShingle |
Bekele, Addisu misc Solar collector misc Parabolic dish misc Nanoparticles misc Nanofluid misc Cooking misc Phase change material Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
authorStr |
Bekele, Addisu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)588780731 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2191-4281 |
topic_title |
Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking Solar collector (dpeaa)DE-He213 Parabolic dish (dpeaa)DE-He213 Nanoparticles (dpeaa)DE-He213 Nanofluid (dpeaa)DE-He213 Cooking (dpeaa)DE-He213 Phase change material (dpeaa)DE-He213 |
topic |
misc Solar collector misc Parabolic dish misc Nanoparticles misc Nanofluid misc Cooking misc Phase change material |
topic_unstemmed |
misc Solar collector misc Parabolic dish misc Nanoparticles misc Nanofluid misc Cooking misc Phase change material |
topic_browse |
misc Solar collector misc Parabolic dish misc Nanoparticles misc Nanofluid misc Cooking misc Phase change material |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Arabian journal for science and engineering |
hierarchy_parent_id |
588780731 |
hierarchy_top_title |
The Arabian journal for science and engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)588780731 (DE-600)2471504-9 |
title |
Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
ctrlnum |
(DE-627)SPR05469938X (SPR)s13369-023-08278-7-e |
title_full |
Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
author_sort |
Bekele, Addisu |
journal |
The Arabian journal for science and engineering |
journalStr |
The Arabian journal for science and engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
2581 |
author_browse |
Bekele, Addisu Dereje, Shifera Pandey, Vivek Badruddin, Irfan Anjum |
container_volume |
49 |
format_se |
Elektronische Aufsätze |
author-letter |
Bekele, Addisu |
doi_str_mv |
10.1007/s13369-023-08278-7 |
normlink |
(ORCID)0000-0001-5827-2189 (ORCID)0000-0001-9570-7751 (ORCID)0000-0002-2247-7999 |
normlink_prefix_str_mv |
(orcid)0000-0001-5827-2189 (orcid)0000-0001-9570-7751 (orcid)0000-0002-2247-7999 |
title_sort |
experimental investigation of parabolic dish solar collector using nanofluids for steam cooking |
title_auth |
Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
abstract |
Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s © King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking |
url |
https://dx.doi.org/10.1007/s13369-023-08278-7 |
remote_bool |
true |
author2 |
Dereje, Shifera Pandey, Vivek Badruddin, Irfan Anjum |
author2Str |
Dereje, Shifera Pandey, Vivek Badruddin, Irfan Anjum |
ppnlink |
588780731 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13369-023-08278-7 |
up_date |
2024-07-04T02:41:45.875Z |
_version_ |
1803614584439832576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05469938X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240209064659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240209s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13369-023-08278-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05469938X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13369-023-08278-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bekele, Addisu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5827-2189</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental Investigation of Parabolic Dish Solar Collector using Nanofluids for Steam Cooking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Environmental degradation, harmful emissions, and an increase in the prices of fuel and electricity are driving factors for the need of renewable energy sources such as solar energy which is an abundant and viable renewable resource. In this study, a Parabolic Dish Solar Collector (PDSC) is fabricated and used with high heat transfer ‘nanofluids’ for cooking application. The nanofluids comprise of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles which are synthesized by the sol–gel and conventional precipitation methods, respectively. The results indicate that the collector efficiency with 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles is 69.13% and 65.5% respectively. Whereas the collector efficiency with 2% volume fraction of the nanoparticles is 71.63% and 67.99% respectively. The collector outlet temperature for 1% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 183 and 176 °C, respectively. Likewise the outlet temperature for 2% volume fraction of $ Al_{2} %$ O_{3} $ and ZnO nanoparticles in the nanofluid is 185 and 181 °C, respectively. $ MgCl_{2} $·$ 6H_{2} $O is used as thermal energy storage material. During charging process the time, sensible energy, latent energy and total energy stored are 125 min, 1.92 MJ, 1.436 MJ and 3.35 MJ, whereas during the discharging process, these are 161 min, 1.57, 1.35 and 2.92 MJ, respectively. The nanofluids with $ Al_{2} %$ O_{3} $ nanoparticles show better heat transfer characteristics compared to ZnO based nanofluid. The maximum value of the first figure of merit (F1) is 0.31 K $ m^{2} $/W. The second figure of merit (F2) for the cooker evaluated from the water boiling test is 0.42 K $ m^{2} $/W s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar collector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic dish</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change material</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dereje, Shifera</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pandey, Vivek</subfield><subfield code="0">(orcid)0000-0001-9570-7751</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Badruddin, Irfan Anjum</subfield><subfield code="0">(orcid)0000-0002-2247-7999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Arabian journal for science and engineering</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">49(2023), 2 vom: 21. Sept., Seite 2581-2597</subfield><subfield code="w">(DE-627)588780731</subfield><subfield code="w">(DE-600)2471504-9</subfield><subfield code="x">2191-4281</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2581-2597</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13369-023-08278-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">09</subfield><subfield code="h">2581-2597</subfield></datafield></record></collection>
|
score |
7.39896 |