Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits
Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design empl...
Ausführliche Beschreibung
Autor*in: |
Raji, Akeem Abimbola [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering and applied science - Berlin : Springer Berlin Heidelberg, 1999, 71(2024), 1 vom: 12. Feb. |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2024 ; number:1 ; day:12 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s44147-024-00379-w |
---|
Katalog-ID: |
SPR054747031 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054747031 | ||
003 | DE-627 | ||
005 | 20240213064717.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240213s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s44147-024-00379-w |2 doi | |
035 | |a (DE-627)SPR054747031 | ||
035 | |a (SPR)s44147-024-00379-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Raji, Akeem Abimbola |e verfasserin |0 (orcid)0000-0003-4303-4940 |4 aut | |
245 | 1 | 0 | |a Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. | ||
650 | 4 | |a Analog-to-digital converter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Analog precoder and combiner |7 (dpeaa)DE-He213 | |
650 | 4 | |a Baseband precoder and combiner |7 (dpeaa)DE-He213 | |
650 | 4 | |a Channel estimation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Millimeter wave communication |7 (dpeaa)DE-He213 | |
700 | 1 | |a Orimolade, Joseph Folorunso |4 aut | |
700 | 1 | |a Amusa, Kamoli Akinwale |4 aut | |
700 | 1 | |a Adejumobi, Isaiah Adediji |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering and applied science |d Berlin : Springer Berlin Heidelberg, 1999 |g 71(2024), 1 vom: 12. Feb. |w (DE-627)1735158240 |w (DE-600)3041047-2 |x 2536-9512 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2024 |g number:1 |g day:12 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s44147-024-00379-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 71 |j 2024 |e 1 |b 12 |c 02 |
author_variant |
a a r aa aar j f o jf jfo k a a ka kaa i a a ia iaa |
---|---|
matchkey_str |
article:25369512:2024----::hneetmtoadioobnnacietrimlieewvclu |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s44147-024-00379-w doi (DE-627)SPR054747031 (SPR)s44147-024-00379-w-e DE-627 ger DE-627 rakwb eng Raji, Akeem Abimbola verfasserin (orcid)0000-0003-4303-4940 aut Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 Orimolade, Joseph Folorunso aut Amusa, Kamoli Akinwale aut Adejumobi, Isaiah Adediji aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 12. Feb. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:12 month:02 https://dx.doi.org/10.1186/s44147-024-00379-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 12 02 |
spelling |
10.1186/s44147-024-00379-w doi (DE-627)SPR054747031 (SPR)s44147-024-00379-w-e DE-627 ger DE-627 rakwb eng Raji, Akeem Abimbola verfasserin (orcid)0000-0003-4303-4940 aut Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 Orimolade, Joseph Folorunso aut Amusa, Kamoli Akinwale aut Adejumobi, Isaiah Adediji aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 12. Feb. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:12 month:02 https://dx.doi.org/10.1186/s44147-024-00379-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 12 02 |
allfields_unstemmed |
10.1186/s44147-024-00379-w doi (DE-627)SPR054747031 (SPR)s44147-024-00379-w-e DE-627 ger DE-627 rakwb eng Raji, Akeem Abimbola verfasserin (orcid)0000-0003-4303-4940 aut Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 Orimolade, Joseph Folorunso aut Amusa, Kamoli Akinwale aut Adejumobi, Isaiah Adediji aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 12. Feb. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:12 month:02 https://dx.doi.org/10.1186/s44147-024-00379-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 12 02 |
allfieldsGer |
10.1186/s44147-024-00379-w doi (DE-627)SPR054747031 (SPR)s44147-024-00379-w-e DE-627 ger DE-627 rakwb eng Raji, Akeem Abimbola verfasserin (orcid)0000-0003-4303-4940 aut Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 Orimolade, Joseph Folorunso aut Amusa, Kamoli Akinwale aut Adejumobi, Isaiah Adediji aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 12. Feb. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:12 month:02 https://dx.doi.org/10.1186/s44147-024-00379-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 12 02 |
allfieldsSound |
10.1186/s44147-024-00379-w doi (DE-627)SPR054747031 (SPR)s44147-024-00379-w-e DE-627 ger DE-627 rakwb eng Raji, Akeem Abimbola verfasserin (orcid)0000-0003-4303-4940 aut Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 Orimolade, Joseph Folorunso aut Amusa, Kamoli Akinwale aut Adejumobi, Isaiah Adediji aut Enthalten in Journal of engineering and applied science Berlin : Springer Berlin Heidelberg, 1999 71(2024), 1 vom: 12. Feb. (DE-627)1735158240 (DE-600)3041047-2 2536-9512 nnns volume:71 year:2024 number:1 day:12 month:02 https://dx.doi.org/10.1186/s44147-024-00379-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 71 2024 1 12 02 |
language |
English |
source |
Enthalten in Journal of engineering and applied science 71(2024), 1 vom: 12. Feb. volume:71 year:2024 number:1 day:12 month:02 |
sourceStr |
Enthalten in Journal of engineering and applied science 71(2024), 1 vom: 12. Feb. volume:71 year:2024 number:1 day:12 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Analog-to-digital converter Analog precoder and combiner Baseband precoder and combiner Channel estimation Millimeter wave communication |
isfreeaccess_bool |
true |
container_title |
Journal of engineering and applied science |
authorswithroles_txt_mv |
Raji, Akeem Abimbola @@aut@@ Orimolade, Joseph Folorunso @@aut@@ Amusa, Kamoli Akinwale @@aut@@ Adejumobi, Isaiah Adediji @@aut@@ |
publishDateDaySort_date |
2024-02-12T00:00:00Z |
hierarchy_top_id |
1735158240 |
id |
SPR054747031 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054747031</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240213064717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240213s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s44147-024-00379-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054747031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44147-024-00379-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raji, Akeem Abimbola</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4303-4940</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog-to-digital converter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog precoder and combiner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baseband precoder and combiner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Millimeter wave communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orimolade, Joseph Folorunso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amusa, Kamoli Akinwale</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adejumobi, Isaiah Adediji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering and applied science</subfield><subfield code="d">Berlin : Springer Berlin Heidelberg, 1999</subfield><subfield code="g">71(2024), 1 vom: 12. Feb.</subfield><subfield code="w">(DE-627)1735158240</subfield><subfield code="w">(DE-600)3041047-2</subfield><subfield code="x">2536-9512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s44147-024-00379-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Raji, Akeem Abimbola |
spellingShingle |
Raji, Akeem Abimbola misc Analog-to-digital converter misc Analog precoder and combiner misc Baseband precoder and combiner misc Channel estimation misc Millimeter wave communication Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
authorStr |
Raji, Akeem Abimbola |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1735158240 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2536-9512 |
topic_title |
Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits Analog-to-digital converter (dpeaa)DE-He213 Analog precoder and combiner (dpeaa)DE-He213 Baseband precoder and combiner (dpeaa)DE-He213 Channel estimation (dpeaa)DE-He213 Millimeter wave communication (dpeaa)DE-He213 |
topic |
misc Analog-to-digital converter misc Analog precoder and combiner misc Baseband precoder and combiner misc Channel estimation misc Millimeter wave communication |
topic_unstemmed |
misc Analog-to-digital converter misc Analog precoder and combiner misc Baseband precoder and combiner misc Channel estimation misc Millimeter wave communication |
topic_browse |
misc Analog-to-digital converter misc Analog precoder and combiner misc Baseband precoder and combiner misc Channel estimation misc Millimeter wave communication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of engineering and applied science |
hierarchy_parent_id |
1735158240 |
hierarchy_top_title |
Journal of engineering and applied science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1735158240 (DE-600)3041047-2 |
title |
Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
ctrlnum |
(DE-627)SPR054747031 (SPR)s44147-024-00379-w-e |
title_full |
Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
author_sort |
Raji, Akeem Abimbola |
journal |
Journal of engineering and applied science |
journalStr |
Journal of engineering and applied science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Raji, Akeem Abimbola Orimolade, Joseph Folorunso Amusa, Kamoli Akinwale Adejumobi, Isaiah Adediji |
container_volume |
71 |
format_se |
Elektronische Aufsätze |
author-letter |
Raji, Akeem Abimbola |
doi_str_mv |
10.1186/s44147-024-00379-w |
normlink |
(ORCID)0000-0003-4303-4940 |
normlink_prefix_str_mv |
(orcid)0000-0003-4303-4940 |
title_sort |
channel estimation and mimo combining architecture in millimeter wave cellular system with few adc bits |
title_auth |
Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
abstract |
Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. © The Author(s) 2024 |
abstractGer |
Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits |
url |
https://dx.doi.org/10.1186/s44147-024-00379-w |
remote_bool |
true |
author2 |
Orimolade, Joseph Folorunso Amusa, Kamoli Akinwale Adejumobi, Isaiah Adediji |
author2Str |
Orimolade, Joseph Folorunso Amusa, Kamoli Akinwale Adejumobi, Isaiah Adediji |
ppnlink |
1735158240 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s44147-024-00379-w |
up_date |
2024-07-04T02:52:18.965Z |
_version_ |
1803615248284909568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054747031</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240213064717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240213s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s44147-024-00379-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054747031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44147-024-00379-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raji, Akeem Abimbola</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4303-4940</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Channel estimation and MIMO combining architecture in millimeter wave cellular system with few ADC bits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hybrid combiner and precoder architectures, radio frequency (RF) chain, analog phase shifters, digital-to-analog converter (DAC), and analog-to-digital converter (ADC) are components of a millimeter wave cellular system. Prior works in the area of millimeter wave cellular system design employ receiver with infinite bit and large amount of RF chain that scales linearly with the quantity of transmitting and receiving antennas. This mode of design no doubt increases power demand or requirement of a typical millimeter wave system. In this work, hybrid architecture with few RF chains and small number of ADC bits are proposed and are used as candidate for millimeter wave channel estimation and cellular communication. In that connection, least square (LS), orthogonal matching pursuit (OMP), compressed sampling matching pursuit (CoSAMP), and deep learning (DL) techniques are utilized for analytical investigation. Indeed, computational results reveal that, when ADC consisting of uniform mid- rise quantizer is employed, the performance of 4 and 6 bits at signal-to-noise ratio (SNR) values of − 10 dB and 20 dB is at par with infinite bit (unquantized case). As a validation, DL compares favorably well with adaptive compressed sensing (ACS) technique previously used in the literature for channel estimation, while OMP and CoSAMP show better performance than ACS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog-to-digital converter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analog precoder and combiner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baseband precoder and combiner</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Millimeter wave communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orimolade, Joseph Folorunso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Amusa, Kamoli Akinwale</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adejumobi, Isaiah Adediji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering and applied science</subfield><subfield code="d">Berlin : Springer Berlin Heidelberg, 1999</subfield><subfield code="g">71(2024), 1 vom: 12. Feb.</subfield><subfield code="w">(DE-627)1735158240</subfield><subfield code="w">(DE-600)3041047-2</subfield><subfield code="x">2536-9512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s44147-024-00379-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.401434 |