P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses
Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscl...
Ausführliche Beschreibung
Autor*in: |
Borzykh, Anna [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Association for Research into Arterial Structure and Physiology 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Artery research - Amsterdam : Atlantis Press, 2006, 26(2020), Suppl 1 vom: Dez., Seite S50-S50 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2020 ; number:Suppl 1 ; month:12 ; pages:S50-S50 |
Links: |
---|
DOI / URN: |
10.2991/artres.k.201209.040 |
---|
Katalog-ID: |
SPR054760550 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054760550 | ||
003 | DE-627 | ||
005 | 20240214064704.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240214s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2991/artres.k.201209.040 |2 doi | |
035 | |a (DE-627)SPR054760550 | ||
035 | |a (SPR)artres.k.201209.040-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Borzykh, Anna |e verfasserin |4 aut | |
245 | 1 | 0 | |a P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Association for Research into Arterial Structure and Physiology 2020 | ||
520 | |a Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). | ||
650 | 4 | |a Artery |7 (dpeaa)DE-He213 | |
650 | 4 | |a diaphragm |7 (dpeaa)DE-He213 | |
650 | 4 | |a NADPH oxidase |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kuzmin, Ilya |4 aut | |
700 | 1 | |a Vinogradova, Olga |4 aut | |
700 | 1 | |a Tarasova, Olga |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Artery research |d Amsterdam : Atlantis Press, 2006 |g 26(2020), Suppl 1 vom: Dez., Seite S50-S50 |w (DE-627)534057489 |w (DE-600)2364789-9 |x 1876-4401 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2020 |g number:Suppl 1 |g month:12 |g pages:S50-S50 |
856 | 4 | 0 | |u https://dx.doi.org/10.2991/artres.k.201209.040 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2020 |e Suppl 1 |c 12 |h S50-S50 |
author_variant |
a b ab i k ik o v ov o t ot |
---|---|
matchkey_str |
article:18764401:2020----::2mcaimondhxdspriiainnhrgltoodahamr |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.2991/artres.k.201209.040 doi (DE-627)SPR054760550 (SPR)artres.k.201209.040-e DE-627 ger DE-627 rakwb eng Borzykh, Anna verfasserin aut P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Association for Research into Arterial Structure and Physiology 2020 Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 Kuzmin, Ilya aut Vinogradova, Olga aut Tarasova, Olga aut Enthalten in Artery research Amsterdam : Atlantis Press, 2006 26(2020), Suppl 1 vom: Dez., Seite S50-S50 (DE-627)534057489 (DE-600)2364789-9 1876-4401 nnns volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 https://dx.doi.org/10.2991/artres.k.201209.040 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2020 Suppl 1 12 S50-S50 |
spelling |
10.2991/artres.k.201209.040 doi (DE-627)SPR054760550 (SPR)artres.k.201209.040-e DE-627 ger DE-627 rakwb eng Borzykh, Anna verfasserin aut P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Association for Research into Arterial Structure and Physiology 2020 Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 Kuzmin, Ilya aut Vinogradova, Olga aut Tarasova, Olga aut Enthalten in Artery research Amsterdam : Atlantis Press, 2006 26(2020), Suppl 1 vom: Dez., Seite S50-S50 (DE-627)534057489 (DE-600)2364789-9 1876-4401 nnns volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 https://dx.doi.org/10.2991/artres.k.201209.040 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2020 Suppl 1 12 S50-S50 |
allfields_unstemmed |
10.2991/artres.k.201209.040 doi (DE-627)SPR054760550 (SPR)artres.k.201209.040-e DE-627 ger DE-627 rakwb eng Borzykh, Anna verfasserin aut P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Association for Research into Arterial Structure and Physiology 2020 Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 Kuzmin, Ilya aut Vinogradova, Olga aut Tarasova, Olga aut Enthalten in Artery research Amsterdam : Atlantis Press, 2006 26(2020), Suppl 1 vom: Dez., Seite S50-S50 (DE-627)534057489 (DE-600)2364789-9 1876-4401 nnns volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 https://dx.doi.org/10.2991/artres.k.201209.040 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2020 Suppl 1 12 S50-S50 |
allfieldsGer |
10.2991/artres.k.201209.040 doi (DE-627)SPR054760550 (SPR)artres.k.201209.040-e DE-627 ger DE-627 rakwb eng Borzykh, Anna verfasserin aut P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Association for Research into Arterial Structure and Physiology 2020 Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 Kuzmin, Ilya aut Vinogradova, Olga aut Tarasova, Olga aut Enthalten in Artery research Amsterdam : Atlantis Press, 2006 26(2020), Suppl 1 vom: Dez., Seite S50-S50 (DE-627)534057489 (DE-600)2364789-9 1876-4401 nnns volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 https://dx.doi.org/10.2991/artres.k.201209.040 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2020 Suppl 1 12 S50-S50 |
allfieldsSound |
10.2991/artres.k.201209.040 doi (DE-627)SPR054760550 (SPR)artres.k.201209.040-e DE-627 ger DE-627 rakwb eng Borzykh, Anna verfasserin aut P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Association for Research into Arterial Structure and Physiology 2020 Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 Kuzmin, Ilya aut Vinogradova, Olga aut Tarasova, Olga aut Enthalten in Artery research Amsterdam : Atlantis Press, 2006 26(2020), Suppl 1 vom: Dez., Seite S50-S50 (DE-627)534057489 (DE-600)2364789-9 1876-4401 nnns volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 https://dx.doi.org/10.2991/artres.k.201209.040 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2020 Suppl 1 12 S50-S50 |
language |
English |
source |
Enthalten in Artery research 26(2020), Suppl 1 vom: Dez., Seite S50-S50 volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 |
sourceStr |
Enthalten in Artery research 26(2020), Suppl 1 vom: Dez., Seite S50-S50 volume:26 year:2020 number:Suppl 1 month:12 pages:S50-S50 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Artery diaphragm NADPH oxidase |
isfreeaccess_bool |
true |
container_title |
Artery research |
authorswithroles_txt_mv |
Borzykh, Anna @@aut@@ Kuzmin, Ilya @@aut@@ Vinogradova, Olga @@aut@@ Tarasova, Olga @@aut@@ |
publishDateDaySort_date |
2020-12-01T00:00:00Z |
hierarchy_top_id |
534057489 |
id |
SPR054760550 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054760550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214064704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240214s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/artres.k.201209.040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054760550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)artres.k.201209.040-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borzykh, Anna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Association for Research into Arterial Structure and Physiology 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diaphragm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NADPH oxidase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, Ilya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vinogradova, Olga</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarasova, Olga</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Artery research</subfield><subfield code="d">Amsterdam : Atlantis Press, 2006</subfield><subfield code="g">26(2020), Suppl 1 vom: Dez., Seite S50-S50</subfield><subfield code="w">(DE-627)534057489</subfield><subfield code="w">(DE-600)2364789-9</subfield><subfield code="x">1876-4401</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:S50-S50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/artres.k.201209.040</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2020</subfield><subfield code="e">Suppl 1</subfield><subfield code="c">12</subfield><subfield code="h">S50-S50</subfield></datafield></record></collection>
|
author |
Borzykh, Anna |
spellingShingle |
Borzykh, Anna misc Artery misc diaphragm misc NADPH oxidase P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
authorStr |
Borzykh, Anna |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)534057489 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1876-4401 |
topic_title |
P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses Artery (dpeaa)DE-He213 diaphragm (dpeaa)DE-He213 NADPH oxidase (dpeaa)DE-He213 |
topic |
misc Artery misc diaphragm misc NADPH oxidase |
topic_unstemmed |
misc Artery misc diaphragm misc NADPH oxidase |
topic_browse |
misc Artery misc diaphragm misc NADPH oxidase |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Artery research |
hierarchy_parent_id |
534057489 |
hierarchy_top_title |
Artery research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)534057489 (DE-600)2364789-9 |
title |
P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
ctrlnum |
(DE-627)SPR054760550 (SPR)artres.k.201209.040-e |
title_full |
P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
author_sort |
Borzykh, Anna |
journal |
Artery research |
journalStr |
Artery research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Borzykh, Anna Kuzmin, Ilya Vinogradova, Olga Tarasova, Olga |
container_volume |
26 |
format_se |
Elektronische Aufsätze |
author-letter |
Borzykh, Anna |
doi_str_mv |
10.2991/artres.k.201209.040 |
title_sort |
p.27 mechanisms of nadph oxidase participation in the regulation of diaphragm artery contractile responses |
title_auth |
P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
abstract |
Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). © Association for Research into Arterial Structure and Physiology 2020 |
abstractGer |
Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). © Association for Research into Arterial Structure and Physiology 2020 |
abstract_unstemmed |
Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060). © Association for Research into Arterial Structure and Physiology 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2068 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 1 |
title_short |
P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses |
url |
https://dx.doi.org/10.2991/artres.k.201209.040 |
remote_bool |
true |
author2 |
Kuzmin, Ilya Vinogradova, Olga Tarasova, Olga |
author2Str |
Kuzmin, Ilya Vinogradova, Olga Tarasova, Olga |
ppnlink |
534057489 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2991/artres.k.201209.040 |
up_date |
2024-07-04T02:55:18.105Z |
_version_ |
1803615436131008512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054760550</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240214064704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240214s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2991/artres.k.201209.040</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054760550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)artres.k.201209.040-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borzykh, Anna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P.27 Mechanisms of NADPH Oxidase Participation in the Regulation of Diaphragm Artery Contractile Responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Association for Research into Arterial Structure and Physiology 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reactive oxygen species (ROS) produced by NADPH-oxidase (NOX) participate in vascular tone control, but their effects in the arteries of respiratory muscles is poorly understood. Possible targets of vasoregulatory ROS influence are NO-pathway in the endothelium and Rho-kinase pathway in smooth muscle cells. Therefore, the aim of this study was to evaluate the interaction of NOX-dependent control with NO- and Rho-kinase signaling pathways in rat diaphragm arteries (DA). Methods The segments of DA were isolated from male Wistar rats and mounted in wire myograph (DMT A/S). We studied the effects of NOX inhibitor VAS2870 (1 μM) on contractile responses to a1-adrenergic agonist methoxamine in the absence and in the presence of NO synthase (L-NNA 100 μM) or Rho-kinase (Y27632, 3 μM) inhibitors as well as in the presence of NO donor DEA/NO. Results VAS2879 prominently attenuated the contractile responses of DA to methoxamine (30% decrease of the area under the concentration-response curve). L-NNA and Y27632 increased and decreased methoxamine-induced contraction of DA, respectively. L-NNA did not change the effects of VAS2870 and the sensitivity to DEA/NO did not differ in arteries with active and inhibited NOX. Along with that Y27632 eliminated the effects of VAS2879 on DA contractile responses to methoxamine. Conclusions We showed that NOX-produced ROS potentiate contractile responses of DA. ROS did not affect the activity of NO-pathway in either endothelial or smooth muscle cells of DA. However, ROS modulate the activity of the Rho-kinase pathway in DA smooth muscle cells. Supported by RSF (project No 19-75-00060).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diaphragm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NADPH oxidase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, Ilya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vinogradova, Olga</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarasova, Olga</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Artery research</subfield><subfield code="d">Amsterdam : Atlantis Press, 2006</subfield><subfield code="g">26(2020), Suppl 1 vom: Dez., Seite S50-S50</subfield><subfield code="w">(DE-627)534057489</subfield><subfield code="w">(DE-600)2364789-9</subfield><subfield code="x">1876-4401</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:S50-S50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2991/artres.k.201209.040</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2020</subfield><subfield code="e">Suppl 1</subfield><subfield code="c">12</subfield><subfield code="h">S50-S50</subfield></datafield></record></collection>
|
score |
7.401165 |