Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures

Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). I...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sanati, Shiva [verfasserIn]

Rouhani, Modjtaba [verfasserIn]

Hodtani, Ghosheh Abed [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Hierarchical temporal memory (HTM)

Spatial pooler (SP)

Sparse distributed representation (SDR)

Renyi mutual information (Renyi MI)

Renyi divergence (Renyi Div)

Henze–Penrose divergence (HP Div)

Long short term memory (LSTM)

Anmerkung:

© The Author(s) 2024

Übergeordnetes Werk:

Enthalten in: Neural processing letters - Springer US, 1994, 56(2024), 2 vom: 16. Feb.

Übergeordnetes Werk:

volume:56 ; year:2024 ; number:2 ; day:16 ; month:02

Links:

Volltext

DOI / URN:

10.1007/s11063-024-11546-8

Katalog-ID:

SPR054797276

Nicht das Richtige dabei?

Schreiben Sie uns!