Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures
Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). I...
Ausführliche Beschreibung
Autor*in: |
Sanati, Shiva [verfasserIn] Rouhani, Modjtaba [verfasserIn] Hodtani, Ghosheh Abed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
Hierarchical temporal memory (HTM) Sparse distributed representation (SDR) Renyi mutual information (Renyi MI) |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural processing letters - Springer US, 1994, 56(2024), 2 vom: 16. Feb. |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2024 ; number:2 ; day:16 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s11063-024-11546-8 |
---|
Katalog-ID: |
SPR054797276 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR054797276 | ||
003 | DE-627 | ||
005 | 20240517064722.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240217s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11063-024-11546-8 |2 doi | |
035 | |a (DE-627)SPR054797276 | ||
035 | |a (SPR)s11063-024-11546-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Sanati, Shiva |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. | ||
650 | 4 | |a Hierarchical temporal memory (HTM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spatial pooler (SP) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sparse distributed representation (SDR) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Renyi mutual information (Renyi MI) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Renyi divergence (Renyi Div) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Henze–Penrose divergence (HP Div) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Long short term memory (LSTM) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rouhani, Modjtaba |e verfasserin |4 aut | |
700 | 1 | |a Hodtani, Ghosheh Abed |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural processing letters |d Springer US, 1994 |g 56(2024), 2 vom: 16. Feb. |w (DE-627)270932607 |w (DE-600)1478375-7 |x 1573-773X |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2024 |g number:2 |g day:16 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11063-024-11546-8 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |q VZ |
951 | |a AR | ||
952 | |d 56 |j 2024 |e 2 |b 16 |c 02 |
author_variant |
s s ss m r mr g a h ga gah |
---|---|
matchkey_str |
article:1573773X:2024----::efraccmaioodfeettsailolrloihsaeoif |
hierarchy_sort_str |
2024 |
bklnumber |
54.72 |
publishDate |
2024 |
allfields |
10.1007/s11063-024-11546-8 doi (DE-627)SPR054797276 (SPR)s11063-024-11546-8-e DE-627 ger DE-627 rakwb eng 000 VZ 54.72 bkl Sanati, Shiva verfasserin aut Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 Rouhani, Modjtaba verfasserin aut Hodtani, Ghosheh Abed verfasserin aut Enthalten in Neural processing letters Springer US, 1994 56(2024), 2 vom: 16. Feb. (DE-627)270932607 (DE-600)1478375-7 1573-773X nnns volume:56 year:2024 number:2 day:16 month:02 https://dx.doi.org/10.1007/s11063-024-11546-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 VZ AR 56 2024 2 16 02 |
spelling |
10.1007/s11063-024-11546-8 doi (DE-627)SPR054797276 (SPR)s11063-024-11546-8-e DE-627 ger DE-627 rakwb eng 000 VZ 54.72 bkl Sanati, Shiva verfasserin aut Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 Rouhani, Modjtaba verfasserin aut Hodtani, Ghosheh Abed verfasserin aut Enthalten in Neural processing letters Springer US, 1994 56(2024), 2 vom: 16. Feb. (DE-627)270932607 (DE-600)1478375-7 1573-773X nnns volume:56 year:2024 number:2 day:16 month:02 https://dx.doi.org/10.1007/s11063-024-11546-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 VZ AR 56 2024 2 16 02 |
allfields_unstemmed |
10.1007/s11063-024-11546-8 doi (DE-627)SPR054797276 (SPR)s11063-024-11546-8-e DE-627 ger DE-627 rakwb eng 000 VZ 54.72 bkl Sanati, Shiva verfasserin aut Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 Rouhani, Modjtaba verfasserin aut Hodtani, Ghosheh Abed verfasserin aut Enthalten in Neural processing letters Springer US, 1994 56(2024), 2 vom: 16. Feb. (DE-627)270932607 (DE-600)1478375-7 1573-773X nnns volume:56 year:2024 number:2 day:16 month:02 https://dx.doi.org/10.1007/s11063-024-11546-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 VZ AR 56 2024 2 16 02 |
allfieldsGer |
10.1007/s11063-024-11546-8 doi (DE-627)SPR054797276 (SPR)s11063-024-11546-8-e DE-627 ger DE-627 rakwb eng 000 VZ 54.72 bkl Sanati, Shiva verfasserin aut Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 Rouhani, Modjtaba verfasserin aut Hodtani, Ghosheh Abed verfasserin aut Enthalten in Neural processing letters Springer US, 1994 56(2024), 2 vom: 16. Feb. (DE-627)270932607 (DE-600)1478375-7 1573-773X nnns volume:56 year:2024 number:2 day:16 month:02 https://dx.doi.org/10.1007/s11063-024-11546-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 VZ AR 56 2024 2 16 02 |
allfieldsSound |
10.1007/s11063-024-11546-8 doi (DE-627)SPR054797276 (SPR)s11063-024-11546-8-e DE-627 ger DE-627 rakwb eng 000 VZ 54.72 bkl Sanati, Shiva verfasserin aut Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 Rouhani, Modjtaba verfasserin aut Hodtani, Ghosheh Abed verfasserin aut Enthalten in Neural processing letters Springer US, 1994 56(2024), 2 vom: 16. Feb. (DE-627)270932607 (DE-600)1478375-7 1573-773X nnns volume:56 year:2024 number:2 day:16 month:02 https://dx.doi.org/10.1007/s11063-024-11546-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 VZ AR 56 2024 2 16 02 |
language |
English |
source |
Enthalten in Neural processing letters 56(2024), 2 vom: 16. Feb. volume:56 year:2024 number:2 day:16 month:02 |
sourceStr |
Enthalten in Neural processing letters 56(2024), 2 vom: 16. Feb. volume:56 year:2024 number:2 day:16 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hierarchical temporal memory (HTM) Spatial pooler (SP) Sparse distributed representation (SDR) Renyi mutual information (Renyi MI) Renyi divergence (Renyi Div) Henze–Penrose divergence (HP Div) Long short term memory (LSTM) |
dewey-raw |
000 |
isfreeaccess_bool |
true |
container_title |
Neural processing letters |
authorswithroles_txt_mv |
Sanati, Shiva @@aut@@ Rouhani, Modjtaba @@aut@@ Hodtani, Ghosheh Abed @@aut@@ |
publishDateDaySort_date |
2024-02-16T00:00:00Z |
hierarchy_top_id |
270932607 |
dewey-sort |
0 |
id |
SPR054797276 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054797276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240517064722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240217s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-024-11546-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054797276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11063-024-11546-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanati, Shiva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical temporal memory (HTM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial pooler (SP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse distributed representation (SDR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renyi mutual information (Renyi MI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renyi divergence (Renyi Div)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henze–Penrose divergence (HP Div)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short term memory (LSTM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouhani, Modjtaba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hodtani, Ghosheh Abed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">56(2024), 2 vom: 16. Feb.</subfield><subfield code="w">(DE-627)270932607</subfield><subfield code="w">(DE-600)1478375-7</subfield><subfield code="x">1573-773X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11063-024-11546-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Sanati, Shiva |
spellingShingle |
Sanati, Shiva ddc 000 bkl 54.72 misc Hierarchical temporal memory (HTM) misc Spatial pooler (SP) misc Sparse distributed representation (SDR) misc Renyi mutual information (Renyi MI) misc Renyi divergence (Renyi Div) misc Henze–Penrose divergence (HP Div) misc Long short term memory (LSTM) Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
authorStr |
Sanati, Shiva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270932607 |
format |
electronic Article |
dewey-ones |
000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-773X |
topic_title |
000 VZ 54.72 bkl Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures Hierarchical temporal memory (HTM) (dpeaa)DE-He213 Spatial pooler (SP) (dpeaa)DE-He213 Sparse distributed representation (SDR) (dpeaa)DE-He213 Renyi mutual information (Renyi MI) (dpeaa)DE-He213 Renyi divergence (Renyi Div) (dpeaa)DE-He213 Henze–Penrose divergence (HP Div) (dpeaa)DE-He213 Long short term memory (LSTM) (dpeaa)DE-He213 |
topic |
ddc 000 bkl 54.72 misc Hierarchical temporal memory (HTM) misc Spatial pooler (SP) misc Sparse distributed representation (SDR) misc Renyi mutual information (Renyi MI) misc Renyi divergence (Renyi Div) misc Henze–Penrose divergence (HP Div) misc Long short term memory (LSTM) |
topic_unstemmed |
ddc 000 bkl 54.72 misc Hierarchical temporal memory (HTM) misc Spatial pooler (SP) misc Sparse distributed representation (SDR) misc Renyi mutual information (Renyi MI) misc Renyi divergence (Renyi Div) misc Henze–Penrose divergence (HP Div) misc Long short term memory (LSTM) |
topic_browse |
ddc 000 bkl 54.72 misc Hierarchical temporal memory (HTM) misc Spatial pooler (SP) misc Sparse distributed representation (SDR) misc Renyi mutual information (Renyi MI) misc Renyi divergence (Renyi Div) misc Henze–Penrose divergence (HP Div) misc Long short term memory (LSTM) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neural processing letters |
hierarchy_parent_id |
270932607 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural processing letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)270932607 (DE-600)1478375-7 |
title |
Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
ctrlnum |
(DE-627)SPR054797276 (SPR)s11063-024-11546-8-e |
title_full |
Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
author_sort |
Sanati, Shiva |
journal |
Neural processing letters |
journalStr |
Neural processing letters |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Sanati, Shiva Rouhani, Modjtaba Hodtani, Ghosheh Abed |
container_volume |
56 |
class |
000 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sanati, Shiva |
doi_str_mv |
10.1007/s11063-024-11546-8 |
dewey-full |
000 |
author2-role |
verfasserin |
title_sort |
performance comparison of different htm-spatial pooler algorithms based on information-theoretic measures |
title_auth |
Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
abstract |
Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. © The Author(s) 2024 |
abstractGer |
Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures |
url |
https://dx.doi.org/10.1007/s11063-024-11546-8 |
remote_bool |
true |
author2 |
Rouhani, Modjtaba Hodtani, Ghosheh Abed |
author2Str |
Rouhani, Modjtaba Hodtani, Ghosheh Abed |
ppnlink |
270932607 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11063-024-11546-8 |
up_date |
2024-07-04T03:03:24.740Z |
_version_ |
1803615946391158784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054797276</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240517064722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240217s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-024-11546-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054797276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11063-024-11546-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanati, Shiva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Comparison of Different HTM-Spatial Pooler Algorithms Based on Information-Theoretic Measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hierarchical temporal memory (HTM) is a promising unsupervised machine-learning algorithm that models key principles of neocortical computation. One of the main components of HTM is the spatial pooler (SP), which encodes binary input streams into sparse distributed representations (SDRs). In this paper, we propose an information-theoretic framework for the performance comparison of HTM-spatial pooler (SP) algorithms, specifically, for quantifying the similarities and differences between sparse distributed representations in SP algorithms. We evaluate SP's standalone performance, as well as HTM's overall performance. Our comparison of various SP algorithms using Renyi mutual information, Renyi divergence, and Henze–Penrose divergence measures reveals that the SP algorithm with learning and a logarithmic boosting function yields the most effective and useful data representation. Moreover, the most effective SP algorithm leads to superior HTM results. In addition, we utilize our proposed framework to compare HTM with other state-of-the-art sequential learning algorithms. We illustrate that HTM exhibits superior adaptability to pattern changes over time than long short term memory (LSTM), gated recurrent unit (GRU) and online sequential extreme learning machine (OS-ELM) algorithms. This superiority is evident from the lower Renyi divergence of HTM (0.23) compared to LSTM6000 (0.33), LSTM3000 (0.38), GRU (0.41), and OS-ELM (0.49). HTM also achieved the highest Renyi mutual information value of 0.79, outperforming LSTM6000 (0.73), LSTM3000 (0.71), GRU (0.68), and OS-ELM (0.62). These findings not only confirm the numerous advantages of HTM over other sequential learning algorithm, but also demonstrate the effectiveness of our proposed information-theoretic approach as a powerful framework for comparing and evaluating various learning algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical temporal memory (HTM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial pooler (SP)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sparse distributed representation (SDR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renyi mutual information (Renyi MI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renyi divergence (Renyi Div)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henze–Penrose divergence (HP Div)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short term memory (LSTM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rouhani, Modjtaba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hodtani, Ghosheh Abed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">56(2024), 2 vom: 16. Feb.</subfield><subfield code="w">(DE-627)270932607</subfield><subfield code="w">(DE-600)1478375-7</subfield><subfield code="x">1573-773X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11063-024-11546-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2024</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.401388 |