Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis
Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate...
Ausführliche Beschreibung
Autor*in: |
Feng, Xiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC urology - London : BioMed Central, 2001, 24(2024), 1 vom: 16. Feb. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:16 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12894-024-01411-0 |
---|
Katalog-ID: |
SPR054802334 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054802334 | ||
003 | DE-627 | ||
005 | 20240217064643.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240217s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12894-024-01411-0 |2 doi | |
035 | |a (DE-627)SPR054802334 | ||
035 | |a (SPR)s12894-024-01411-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feng, Xiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. | ||
650 | 4 | |a MpMRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a BpMRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a PI-RADSv2.1 |7 (dpeaa)DE-He213 | |
650 | 4 | |a csPCa |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multivariate analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Xin |4 aut | |
700 | 1 | |a Peng, Peng |4 aut | |
700 | 1 | |a Zhou, He |4 aut | |
700 | 1 | |a Hong, Yi |4 aut | |
700 | 1 | |a Zhu, Chunxia |4 aut | |
700 | 1 | |a Lu, Libing |4 aut | |
700 | 1 | |a Xie, Siyu |4 aut | |
700 | 1 | |a Zhang, Sijun |4 aut | |
700 | 1 | |a Long, Liling |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC urology |d London : BioMed Central, 2001 |g 24(2024), 1 vom: 16. Feb. |w (DE-627)335488811 |w (DE-600)2059857-9 |x 1471-2490 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:16 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12894-024-01411-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 16 |c 02 |
author_variant |
x f xf x c xc p p pp h z hz y h yh c z cz l l ll s x sx s z sz l l ll |
---|---|
matchkey_str |
article:14712490:2024----::ausfutprmtiadiaaercridansnciialsgiiatrsa |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s12894-024-01411-0 doi (DE-627)SPR054802334 (SPR)s12894-024-01411-0-e DE-627 ger DE-627 rakwb eng Feng, Xiao verfasserin aut Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 Chen, Xin aut Peng, Peng aut Zhou, He aut Hong, Yi aut Zhu, Chunxia aut Lu, Libing aut Xie, Siyu aut Zhang, Sijun aut Long, Liling aut Enthalten in BMC urology London : BioMed Central, 2001 24(2024), 1 vom: 16. Feb. (DE-627)335488811 (DE-600)2059857-9 1471-2490 nnns volume:24 year:2024 number:1 day:16 month:02 https://dx.doi.org/10.1186/s12894-024-01411-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 16 02 |
spelling |
10.1186/s12894-024-01411-0 doi (DE-627)SPR054802334 (SPR)s12894-024-01411-0-e DE-627 ger DE-627 rakwb eng Feng, Xiao verfasserin aut Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 Chen, Xin aut Peng, Peng aut Zhou, He aut Hong, Yi aut Zhu, Chunxia aut Lu, Libing aut Xie, Siyu aut Zhang, Sijun aut Long, Liling aut Enthalten in BMC urology London : BioMed Central, 2001 24(2024), 1 vom: 16. Feb. (DE-627)335488811 (DE-600)2059857-9 1471-2490 nnns volume:24 year:2024 number:1 day:16 month:02 https://dx.doi.org/10.1186/s12894-024-01411-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 16 02 |
allfields_unstemmed |
10.1186/s12894-024-01411-0 doi (DE-627)SPR054802334 (SPR)s12894-024-01411-0-e DE-627 ger DE-627 rakwb eng Feng, Xiao verfasserin aut Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 Chen, Xin aut Peng, Peng aut Zhou, He aut Hong, Yi aut Zhu, Chunxia aut Lu, Libing aut Xie, Siyu aut Zhang, Sijun aut Long, Liling aut Enthalten in BMC urology London : BioMed Central, 2001 24(2024), 1 vom: 16. Feb. (DE-627)335488811 (DE-600)2059857-9 1471-2490 nnns volume:24 year:2024 number:1 day:16 month:02 https://dx.doi.org/10.1186/s12894-024-01411-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 16 02 |
allfieldsGer |
10.1186/s12894-024-01411-0 doi (DE-627)SPR054802334 (SPR)s12894-024-01411-0-e DE-627 ger DE-627 rakwb eng Feng, Xiao verfasserin aut Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 Chen, Xin aut Peng, Peng aut Zhou, He aut Hong, Yi aut Zhu, Chunxia aut Lu, Libing aut Xie, Siyu aut Zhang, Sijun aut Long, Liling aut Enthalten in BMC urology London : BioMed Central, 2001 24(2024), 1 vom: 16. Feb. (DE-627)335488811 (DE-600)2059857-9 1471-2490 nnns volume:24 year:2024 number:1 day:16 month:02 https://dx.doi.org/10.1186/s12894-024-01411-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 16 02 |
allfieldsSound |
10.1186/s12894-024-01411-0 doi (DE-627)SPR054802334 (SPR)s12894-024-01411-0-e DE-627 ger DE-627 rakwb eng Feng, Xiao verfasserin aut Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 Chen, Xin aut Peng, Peng aut Zhou, He aut Hong, Yi aut Zhu, Chunxia aut Lu, Libing aut Xie, Siyu aut Zhang, Sijun aut Long, Liling aut Enthalten in BMC urology London : BioMed Central, 2001 24(2024), 1 vom: 16. Feb. (DE-627)335488811 (DE-600)2059857-9 1471-2490 nnns volume:24 year:2024 number:1 day:16 month:02 https://dx.doi.org/10.1186/s12894-024-01411-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 16 02 |
language |
English |
source |
Enthalten in BMC urology 24(2024), 1 vom: 16. Feb. volume:24 year:2024 number:1 day:16 month:02 |
sourceStr |
Enthalten in BMC urology 24(2024), 1 vom: 16. Feb. volume:24 year:2024 number:1 day:16 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MpMRI BpMRI PI-RADSv2.1 csPCa Multivariate analysis |
isfreeaccess_bool |
true |
container_title |
BMC urology |
authorswithroles_txt_mv |
Feng, Xiao @@aut@@ Chen, Xin @@aut@@ Peng, Peng @@aut@@ Zhou, He @@aut@@ Hong, Yi @@aut@@ Zhu, Chunxia @@aut@@ Lu, Libing @@aut@@ Xie, Siyu @@aut@@ Zhang, Sijun @@aut@@ Long, Liling @@aut@@ |
publishDateDaySort_date |
2024-02-16T00:00:00Z |
hierarchy_top_id |
335488811 |
id |
SPR054802334 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054802334</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240217064643.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240217s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12894-024-01411-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054802334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12894-024-01411-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MpMRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BpMRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADSv2.1</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">csPCa</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Peng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, He</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Yi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chunxia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Libing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Siyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Sijun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Liling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC urology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 16. Feb.</subfield><subfield code="w">(DE-627)335488811</subfield><subfield code="w">(DE-600)2059857-9</subfield><subfield code="x">1471-2490</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12894-024-01411-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Feng, Xiao |
spellingShingle |
Feng, Xiao misc MpMRI misc BpMRI misc PI-RADSv2.1 misc csPCa misc Multivariate analysis Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
authorStr |
Feng, Xiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335488811 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2490 |
topic_title |
Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis MpMRI (dpeaa)DE-He213 BpMRI (dpeaa)DE-He213 PI-RADSv2.1 (dpeaa)DE-He213 csPCa (dpeaa)DE-He213 Multivariate analysis (dpeaa)DE-He213 |
topic |
misc MpMRI misc BpMRI misc PI-RADSv2.1 misc csPCa misc Multivariate analysis |
topic_unstemmed |
misc MpMRI misc BpMRI misc PI-RADSv2.1 misc csPCa misc Multivariate analysis |
topic_browse |
misc MpMRI misc BpMRI misc PI-RADSv2.1 misc csPCa misc Multivariate analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC urology |
hierarchy_parent_id |
335488811 |
hierarchy_top_title |
BMC urology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335488811 (DE-600)2059857-9 |
title |
Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
ctrlnum |
(DE-627)SPR054802334 (SPR)s12894-024-01411-0-e |
title_full |
Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
author_sort |
Feng, Xiao |
journal |
BMC urology |
journalStr |
BMC urology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Feng, Xiao Chen, Xin Peng, Peng Zhou, He Hong, Yi Zhu, Chunxia Lu, Libing Xie, Siyu Zhang, Sijun Long, Liling |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Xiao |
doi_str_mv |
10.1186/s12894-024-01411-0 |
title_sort |
values of multiparametric and biparametric mri in diagnosing clinically significant prostate cancer: a multivariate analysis |
title_auth |
Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
abstract |
Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. © The Author(s) 2024 |
abstractGer |
Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. © The Author(s) 2024 |
abstract_unstemmed |
Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis |
url |
https://dx.doi.org/10.1186/s12894-024-01411-0 |
remote_bool |
true |
author2 |
Chen, Xin Peng, Peng Zhou, He Hong, Yi Zhu, Chunxia Lu, Libing Xie, Siyu Zhang, Sijun Long, Liling |
author2Str |
Chen, Xin Peng, Peng Zhou, He Hong, Yi Zhu, Chunxia Lu, Libing Xie, Siyu Zhang, Sijun Long, Liling |
ppnlink |
335488811 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12894-024-01411-0 |
up_date |
2024-07-04T03:04:28.136Z |
_version_ |
1803616012881362944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054802334</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240217064643.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240217s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12894-024-01411-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054802334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12894-024-01411-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To investigate the value of semi-quantitative and quantitative parameters (PI-RADS score, T2WI score, ADC, Ktrans, and Kep) based on multiparametric MRI (mpMRI) or biparametric MRI (bpMRI) combined with prostate specific antigen density (PSAD) in detecting clinically significant prostate cancer (csPCa). Methods A total of 561 patients (276 with csPCa; 285 with non-csPCa) with biopsy-confirmed prostate diseases who underwent preoperative mpMRI were included. Prostate volume was measured for calculation of PSAD. Prostate index lesions were scored on a five-point scale on T2WI images (T2WI score) and mpMRI images (PI-RADS score) according to the PI-RADS v2.1 scoring standard. DWI and DCE-MRI images were processed to measure the quantitative parameters of the index lesion, including ADC, Kep, and Ktrans values. The predictors of csPCa were screened by logistics regression analysis. Predictive models of bpMRI and mpMRI were established. ROC curves were used to evaluate the efficacy of parameters and the model in diagnosing csPCa. Results The independent diagnostic accuracy of PSA density, PI-RADS score, T2WI score, ADCrec, Ktrans, and Kep for csPCa were 80.2%, 89.5%, 88.3%, 84.6%, 58.5% and 61.6%, respectively. The diagnostic accuracy of bpMRI T2WI score and ADC value combined with PSAD was higher than that of PI-RADS score. The combination of mpMRI PI‑RADS score, ADC value with PSAD had the highest diagnostic accuracy. Conclusions PI-RADS score according to the PI-RADS v2.1 scoring standard was the most accurate independent diagnostic index. The predictive value of bpMRI model for csPCa was slightly lower than that of mpMRI model, but higher than that of PI-RADS score.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MpMRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BpMRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADSv2.1</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">csPCa</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Peng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, He</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Yi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Chunxia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Libing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Siyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Sijun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Liling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC urology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 16. Feb.</subfield><subfield code="w">(DE-627)335488811</subfield><subfield code="w">(DE-600)2059857-9</subfield><subfield code="x">1471-2490</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12894-024-01411-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.40189 |